메뉴 건너뛰기




Volumn 101, Issue , 2018, Pages 60-71

Methodologies, principles and prospects of applying big data in safety science research

Author keywords

Big data application; Method; Principle; Prospect and challenge; Safety big data (SBD); Safety science; Safety small data (SSD)

Indexed keywords

DATA HANDLING;

EID: 85028037985     PISSN: 09257535     EISSN: 18791042     Source Type: Journal    
DOI: 10.1016/j.ssci.2017.08.012     Document Type: Article
Times cited : (52)

References (81)
  • 1
    • 85028039220 scopus 로고    scopus 로고
    • Grey model for accident prediction in data-scarce environment
    • M. Hashim Springer Singapore
    • Al-Shanini, A., Ahmad, A., Khan, F., Grey model for accident prediction in data-scarce environment. Hashim, M., (eds.) ICGSCE, 2015, Springer, Singapore, 411–418.
    • (2015) ICGSCE , pp. 411-418
    • Al-Shanini, A.1    Ahmad, A.2    Khan, F.3
  • 2
    • 84992310856 scopus 로고    scopus 로고
    • Emerging economies, emerging challenges: mobilising and capturing value from big data
    • Amankwah-Amoah, J., Emerging economies, emerging challenges: mobilising and capturing value from big data. Technol. Forecast. Soc. Change 110 (2016), 167–174.
    • (2016) Technol. Forecast. Soc. Change , vol.110 , pp. 167-174
    • Amankwah-Amoah, J.1
  • 3
    • 85119705933 scopus 로고    scopus 로고
    • Amankwah-Amoah, J. Safety or not safety in numbers? Government, big data and public policy formulation. Ind. Manage. Data System, 115
    • Amankwah-Amoah, J., 2015. Safety or not safety in numbers? Government, big data and public policy formulation. Ind. Manage. Data System, 115, pp. 1596–1603.
    • (2015) , pp. 1596-1603
  • 4
    • 83455203420 scopus 로고    scopus 로고
    • Arthur, W.B. The second economy. McKinsey Quarterly, October
    • Arthur, W.B., 2011. The second economy. McKinsey Quarterly, October, pp. 1–9.
    • (2011) , pp. 1-9
  • 5
    • 85028079417 scopus 로고    scopus 로고
    • Asymmetric information: theory and applications
    • Auronen, L., Asymmetric information: theory and applications. Semin. Strategy Int. Business, 2003, 1–35.
    • (2003) Semin. Strategy Int. Business , pp. 1-35
    • Auronen, L.1
  • 6
    • 84947584456 scopus 로고    scopus 로고
    • Assessing the quality of service using big data analytics: with application to healthcare
    • Batarseh, F.A., Latif, E.A., Assessing the quality of service using big data analytics: with application to healthcare. Big Data Res. 4:11 (2016), 13–24.
    • (2016) Big Data Res. , vol.4 , Issue.11 , pp. 13-24
    • Batarseh, F.A.1    Latif, E.A.2
  • 7
    • 84978304055 scopus 로고    scopus 로고
    • Importance of Internet of Things and Big Data in Building Smart City and What Would be its Challenges
    • ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
    • Bawa, W., Caganova, D., Szilva, S., et al. Importance of Internet of Things and Big Data in Building Smart City and What Would be its Challenges. 2016, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 605–616.
    • (2016) , pp. 605-616
    • Bawa, W.1    Caganova, D.2    Szilva, S.3
  • 8
    • 85019077065 scopus 로고    scopus 로고
    • LCA data quality: a management science perspective
    • Bicalho, T., Sauer, I., Rambaud, A., et al. LCA data quality: a management science perspective. J. Cleaner Prod. 156 (2017), 888–898.
    • (2017) J. Cleaner Prod. , vol.156 , pp. 888-898
    • Bicalho, T.1    Sauer, I.2    Rambaud, A.3
  • 9
    • 84897092903 scopus 로고    scopus 로고
    • The foundations of safety science
    • Coze, J.C.L., Pettersen, K., Reiman, T., The foundations of safety science. Saf. Sci. 67:10 (2014), 1–5.
    • (2014) Saf. Sci. , vol.67 , Issue.10 , pp. 1-5
    • Coze, J.C.L.1    Pettersen, K.2    Reiman, T.3
  • 10
    • 84963969040 scopus 로고    scopus 로고
    • The promises of big data and small data for travel behavior (aka human mobility) analysis
    • Chen, C., Ma, J., Susilo, Y., et al. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Res. Part C: Emerging Technol. 68 (2016), 285–299.
    • (2016) Transportation Res. Part C: Emerging Technol. , vol.68 , pp. 285-299
    • Chen, C.1    Ma, J.2    Susilo, Y.3
  • 11
    • 0000611709 scopus 로고    scopus 로고
    • A distance based regression model for prediction with mixed data
    • Cuardras, C.M., Arenas, C., A distance based regression model for prediction with mixed data. Commun. Statistics- Theory Methods 19:6 (2011), 2261–2279.
    • (2011) Commun. Statistics- Theory Methods , vol.19 , Issue.6 , pp. 2261-2279
    • Cuardras, C.M.1    Arenas, C.2
  • 12
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: A survey on big data
    • Chen, C.L.P., Zhang, C.Y., Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inf. Sci. 275:11 (2014), 314–347.
    • (2014) Inf. Sci. , vol.275 , Issue.11 , pp. 314-347
    • Chen, C.L.P.1    Zhang, C.Y.2
  • 13
    • 84978726732 scopus 로고    scopus 로고
    • Cuzzocrea, A. Privacy and security of big data: current challenges and future research perspectives. In: PSBD'14 Proceedings of the First International Workshop on Privacy and Security of Big Data, Shanghai, China
    • Cuzzocrea, A., 2014. Privacy and security of big data: current challenges and future research perspectives. In: PSBD'14 Proceedings of the First International Workshop on Privacy and Security of Big Data, Shanghai, China, pp. 45–47.
    • (2014) , pp. 45-47
  • 15
    • 84928796890 scopus 로고    scopus 로고
    • Low-power and reliable communications for UWB-based wireless monitoring sensor networks in underground mine tunnels
    • El-Nasr, M.A., Shaban, H., Low-power and reliable communications for UWB-based wireless monitoring sensor networks in underground mine tunnels. Int. J. Distributed Sensor Network 2015:1 (2015), 1–11.
    • (2015) Int. J. Distributed Sensor Network , vol.2015 , Issue.1 , pp. 1-11
    • El-Nasr, M.A.1    Shaban, H.2
  • 16
    • 85028079198 scopus 로고    scopus 로고
    • Big data paradigm-analysis, application, and challenges
    • Edosio, U.Z., Big data paradigm-analysis, application, and challenges. Eng. Res. Seminar 13 (2014), 55–59.
    • (2014) Eng. Res. Seminar , vol.13 , pp. 55-59
    • Edosio, U.Z.1
  • 17
    • 84919389078 scopus 로고    scopus 로고
    • Challenges of big data analysis
    • Fan, J., Han, F., Liu, H., Challenges of big data analysis. Natl. Sci. Rev. 1:2 (2014), 293–314.
    • (2014) Natl. Sci. Rev. , vol.1 , Issue.2 , pp. 293-314
    • Fan, J.1    Han, F.2    Liu, H.3
  • 18
    • 85028073219 scopus 로고    scopus 로고
    • Pattern-based strategy: getting value from big data. Gartner Group Press. DOL: Goo214032.
    • Genovese, Y., Prentice, S., 2011. Pattern-based strategy: getting value from big data. Gartner Group Press. DOL: Goo214032.
    • (2011)
    • Genovese, Y.1    Prentice, S.2
  • 19
    • 84881306794 scopus 로고    scopus 로고
    • Towards an optimized big data processing system
    • Ghit, B., Iosup, A., Epema, D., Towards an optimized big data processing system. IEEE/ACM Int. Symp. Cluster 2013 (2013), 83–86, 10.1109/CCGrid.2013.53.
    • (2013) IEEE/ACM Int. Symp. Cluster , vol.2013 , pp. 83-86
    • Ghit, B.1    Iosup, A.2    Epema, D.3
  • 20
    • 85028044272 scopus 로고    scopus 로고
    • Big data risk assessment the 21th century approach to safety science. International Railway Safety Council 2014, Johannesburg
    • Gulijk, C.V., Figueres-Esteban, M., Hughes, P., 2015. Big data risk assessment the 21th century approach to safety science. International Railway Safety Council 2014, Johannesburg, pp: 4–9.
    • (2015) , pp. 4-9
    • Gulijk, C.V.1    Figueres-Esteban, M.2    Hughes, P.3
  • 21
    • 84975511307 scopus 로고    scopus 로고
    • A big-data-based platform of workers' behavior: Observations from the field
    • Guo, S.Y., Ding, L.Y., Luo, H.B., et al. A big-data-based platform of workers' behavior: Observations from the field. Accid. Anal. Prev. 93:1 (2015), 299–309.
    • (2015) Accid. Anal. Prev. , vol.93 , Issue.1 , pp. 299-309
    • Guo, S.Y.1    Ding, L.Y.2    Luo, H.B.3
  • 22
    • 84897103419 scopus 로고    scopus 로고
    • Foundations of safety science: A postscript
    • Hale, A., Foundations of safety science: A postscript. Saf. Sci. 67:8 (2014), 64–69.
    • (2014) Saf. Sci. , vol.67 , Issue.8 , pp. 64-69
    • Hale, A.1
  • 23
    • 70849126253 scopus 로고    scopus 로고
    • The unreasonable effectiveness of data
    • Halevy, A., Norvig, P., Pereira, F., The unreasonable effectiveness of data. IEEE Intell. Syst. 24:2 (2009), 8–12.
    • (2009) IEEE Intell. Syst. , vol.24 , Issue.2 , pp. 8-12
    • Halevy, A.1    Norvig, P.2    Pereira, F.3
  • 24
    • 77953207828 scopus 로고    scopus 로고
    • The fourth paradigm: data-intensive scientific discovery
    • Hey, T., The fourth paradigm: data-intensive scientific discovery. Int. Symp. Inf. Manage. A Changing World, 317(8), 2012, 1.
    • (2012) Int. Symp. Inf. Manage. A Changing World , vol.317 , Issue.8 , pp. 1
    • Hey, T.1
  • 25
    • 84944325111 scopus 로고    scopus 로고
    • Firefighting to innovation: using human factors and ergonomics to tackle slip, trip, and fall risks in hospitals
    • Hignett, S., Wolf, L., Taylor, E., et al. Firefighting to innovation: using human factors and ergonomics to tackle slip, trip, and fall risks in hospitals. Hum. Factors: J. Hum. Factors Ergonomics Soc. 57:7 (2015), 1195–1207.
    • (2015) Hum. Factors: J. Hum. Factors Ergonomics Soc. , vol.57 , Issue.7 , pp. 1195-1207
    • Hignett, S.1    Wolf, L.2    Taylor, E.3
  • 26
    • 84857097124 scopus 로고    scopus 로고
    • Sociology of science: big data deserve a bigger audience
    • Huberman, B.A., Sociology of science: big data deserve a bigger audience. Nature, 482(7385), 2012, 308.
    • (2012) Nature , vol.482 , Issue.7385 , pp. 308
    • Huberman, B.A.1
  • 27
    • 85028033448 scopus 로고    scopus 로고
    • A new paradigm for accident investigation and analysis in the era of big data
    • Huang, L., Wu, C., Wang, B., Ouyang, Q., A new paradigm for accident investigation and analysis in the era of big data. Process Saf. Prog., 2017, 10.1002/prs.11898.
    • (2017) Process Saf. Prog.
    • Huang, L.1    Wu, C.2    Wang, B.3    Ouyang, Q.4
  • 28
    • 85045307910 scopus 로고    scopus 로고
    • A survey on approaches to efficient classification of data streams using concept drift. Int. J. Adv. Res. Comput. Sci. Manage. Stud.
    • Jadhav, A.L., Deshpande, L., 2016. A survey on approaches to efficient classification of data streams using concept drift. Int. J. Adv. Res. Comput. Sci. Manage. Stud., 4(5), 137–141.
    • (2016) , vol.4 , Issue.5 , pp. 137-141
    • Jadhav, A.L.1    Deshpande, L.2
  • 29
    • 84929224098 scopus 로고    scopus 로고
    • Big data and Science: myths and reality
    • Jagadish, H.V., Big data and Science: myths and reality. Big Data Res. 2:2 (2015), 49–52.
    • (2015) Big Data Res. , vol.2 , Issue.2 , pp. 49-52
    • Jagadish, H.V.1
  • 30
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • Jin, X., Wah, B.W., Cheng, X., et al. Significance and challenges of big data research. Big Data Res. 2:2 (2015), 59–64.
    • (2015) Big Data Res. , vol.2 , Issue.2 , pp. 59-64
    • Jin, X.1    Wah, B.W.2    Cheng, X.3
  • 31
    • 84885041315 scopus 로고    scopus 로고
    • On statistics, computation and scalability
    • Jordan, M.I., On statistics, computation and scalability. Bernoulli 19:4 (2013), 1378–1390.
    • (2013) Bernoulli , vol.19 , Issue.4 , pp. 1378-1390
    • Jordan, M.I.1
  • 34
    • 84905910853 scopus 로고    scopus 로고
    • A scalable bootstrap for massive data
    • Kleiner, A., Talwalkar, A., Sarkar, P., et al. A scalable bootstrap for massive data. J. Roy. Stat. Soc. 76:4 (2014), 795–816.
    • (2014) J. Roy. Stat. Soc. , vol.76 , Issue.4 , pp. 795-816
    • Kleiner, A.1    Talwalkar, A.2    Sarkar, P.3
  • 35
    • 85017478026 scopus 로고    scopus 로고
    • Big, bigger, biggest data. In: We are big Data: The Future of The Information Society. Atlantis Press (Zeger Karssen), Springer, Paris. doi:.
    • Klous, S., Wielaard, N., 2016. Big, bigger, biggest data. In: We are big Data: The Future of The Information Society. Atlantis Press (Zeger Karssen), Springer, Paris. doi: http://dx.doi.org/10.2991/978-94-6239-183-3.
    • (2016)
    • Klous, S.1    Wielaard, N.2
  • 36
    • 84953857304 scopus 로고    scopus 로고
    • Big data's role in expanding access to financial services in China
    • Kshetri, N., Big data's role in expanding access to financial services in China. Int. J. Inf. Manage. 36:3 (2016), 297–308.
    • (2016) Int. J. Inf. Manage. , vol.36 , Issue.3 , pp. 297-308
    • Kshetri, N.1
  • 37
    • 84925131283 scopus 로고    scopus 로고
    • Big data: A dimensionality reduction and attribute selection using PCA for diabetic data bases
    • Kumar, S.S., Big data: A dimensionality reduction and attribute selection using PCA for diabetic data bases. Res. J. Pharm. Biol. Chem. Sci. 6:2 (2015), 1394–1401.
    • (2015) Res. J. Pharm. Biol. Chem. Sci. , vol.6 , Issue.2 , pp. 1394-1401
    • Kumar, S.S.1
  • 38
    • 85012284270 scopus 로고    scopus 로고
    • Big data: dimensions, evolution, impacts, and challenges
    • Lee, I., Big data: dimensions, evolution, impacts, and challenges. Bus. Horiz. 60 (2017), 293–303.
    • (2017) Bus. Horiz. , vol.60 , pp. 293-303
    • Lee, I.1
  • 39
    • 85015430002 scopus 로고    scopus 로고
    • Construction and Practice of Safety Science and Discipline
    • Chemical Industry Press Beijing
    • Liu, Q., Construction and Practice of Safety Science and Discipline. 2010, Chemical Industry Press, Beijing, 74–131.
    • (2010) , pp. 74-131
    • Liu, Q.1
  • 40
    • 51349151126 scopus 로고    scopus 로고
    • Big data: How do your data grow?
    • Lynch, C., Big data: How do your data grow?. Nature 455:7209 (2008), 28–29.
    • (2008) Nature , vol.455 , Issue.7209 , pp. 28-29
    • Lynch, C.1
  • 41
    • 85028063479 scopus 로고    scopus 로고
    • Big-data analytics: challenges, key technologies and prospects
    • Luo, S., Wang, Z., Wang, Z., Big-data analytics: challenges, key technologies and prospects. ZTE Commun. 11:2 (2013), 11–17.
    • (2013) ZTE Commun. , vol.11 , Issue.2 , pp. 11-17
    • Luo, S.1    Wang, Z.2    Wang, Z.3
  • 42
    • 84864389106 scopus 로고    scopus 로고
    • Aggregated estimating equation estimation
    • Lin, N., Xi, R., Aggregated estimating equation estimation. Stat. Its Interface 1:1 (2011), 73–83.
    • (2011) Stat. Its Interface , vol.1 , Issue.1 , pp. 73-83
    • Lin, N.1    Xi, R.2
  • 43
    • 84878223305 scopus 로고    scopus 로고
    • A resampling-based stochastic approximation method for analysis of large geostatistical data
    • Liang, F., Cheng, Y., Song, Q., et al. A resampling-based stochastic approximation method for analysis of large geostatistical data. J. Am. Stat. Assoc. 108:501 (2013), 325–329.
    • (2013) J. Am. Stat. Assoc. , vol.108 , Issue.501 , pp. 325-329
    • Liang, F.1    Cheng, Y.2    Song, Q.3
  • 44
    • 85028060792 scopus 로고    scopus 로고
    • Firefly Monte Carlo: exact MCMC with subsets of data. In: 30th International Conference on Artificial Intelligence, MA, US.
    • Maclaurin, D., Adams, R.P., 2014. Firefly Monte Carlo: exact MCMC with subsets of data. In: 30th International Conference on Artificial Intelligence, MA, US.
    • (2014)
    • Maclaurin, D.1    Adams, R.P.2
  • 45
    • 84891792018 scopus 로고    scopus 로고
    • Discipline construction and knowledge system of “safety science and engineering”
    • Mao, H., Discipline construction and knowledge system of “safety science and engineering”. Int. Symp. Saf. Sci. Eng. China 43 (2012), 506–511.
    • (2012) Int. Symp. Saf. Sci. Eng. China , vol.43 , pp. 506-511
    • Mao, H.1
  • 46
    • 1442326865 scopus 로고    scopus 로고
    • For a rise of comparative cognitive science
    • Matsuzawa, T., Tomonaga, M., For a rise of comparative cognitive science. Anim. Cogn. 4:3 (2001), 133–135.
    • (2001) Anim. Cogn. , vol.4 , Issue.3 , pp. 133-135
    • Matsuzawa, T.1    Tomonaga, M.2
  • 47
    • 84875493137 scopus 로고    scopus 로고
    • A review of integrated analysis in fisheries stock assessment
    • Maunder, M.N., Punt, A.E., A review of integrated analysis in fisheries stock assessment. Fish. Res. 142:6 (2013), 61–74.
    • (2013) Fish. Res. , vol.142 , Issue.6 , pp. 61-74
    • Maunder, M.N.1    Punt, A.E.2
  • 48
    • 84876494973 scopus 로고    scopus 로고
    • Big Data: A Revolution that will Transform How We Live, Work, and Think
    • Houghton Mifflin Harcourt M A, Boston
    • Mayer-Schonberger, V., Cukier, K., Big Data: A Revolution that will Transform How We Live, Work, and Think. 2013, Houghton Mifflin Harcourt, M A, Boston.
    • (2013)
    • Mayer-Schonberger, V.1    Cukier, K.2
  • 49
    • 84959119436 scopus 로고    scopus 로고
    • Sociology in the era of big data: The ascent of forensic social science
    • Mcfarland, D.A., Lewis, K., Goldberg, A., Sociology in the era of big data: The ascent of forensic social science. Am. Sociol. 47:1 (2016), 12–35.
    • (2016) Am. Sociol. , vol.47 , Issue.1 , pp. 12-35
    • Mcfarland, D.A.1    Lewis, K.2    Goldberg, A.3
  • 50
    • 85074204022 scopus 로고    scopus 로고
    • Facing big data: Making sociology relevant
    • Mutzel, S., Facing big data: Making sociology relevant. Big Data Soc. 2:2 (2015), 1–4.
    • (2015) Big Data Soc. , vol.2 , Issue.2 , pp. 1-4
    • Mutzel, S.1
  • 51
    • 84938311437 scopus 로고    scopus 로고
    • A statistical perspective on algorithmic leveraging
    • Ma, P., Mahoney, M.W., Yu, B., A statistical perspective on algorithmic leveraging. J. Mach. Learning Res. 16:1 (2013), 861–911.
    • (2013) J. Mach. Learning Res. , vol.16 , Issue.1 , pp. 861-911
    • Ma, P.1    Mahoney, M.W.2    Yu, B.3
  • 52
    • 85028032302 scopus 로고    scopus 로고
    • Asymptotically exact, embarrassingly parallel MCMC
    • arXiv: 1311.4780
    • Neiswanger, W., Wang, C., Xing, E., Asymptotically exact, embarrassingly parallel MCMC. Comput. Sci., 2013 arXiv: 1311.4780.
    • (2013) Comput. Sci.
    • Neiswanger, W.1    Wang, C.2    Xing, E.3
  • 55
    • 85028081952 scopus 로고    scopus 로고
    • On comparison between big data and traditional safety statistics and big data’ s application prospects
    • Ouyang, Q., Wu, C., On comparison between big data and traditional safety statistics and big data’ s application prospects. China Safety Sci. J. 26:3 (2016), 1–7.
    • (2016) China Safety Sci. J. , vol.26 , Issue.3 , pp. 1-7
    • Ouyang, Q.1    Wu, C.2
  • 56
    • 84968543848 scopus 로고    scopus 로고
    • Application of big-data in healthcare analytics — Prospects and challenges. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV
    • Rahman, F., Slepian, M.J., 2016. Application of big-data in healthcare analytics — Prospects and challenges. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), Las Vegas, NV, pp. 13–16.
    • (2016) , pp. 13-16
    • Rahman, F.1    Slepian, M.J.2
  • 57
    • 85028058476 scopus 로고    scopus 로고
    • Big data solutions for urban environments a systematic review. In: The First International Conference on Big Data, Small Data, Linked Data and Open Data, (c)
    • Ribeiro, F., Ferraz, F.S., Carolina, M., et al., 2015. Big data solutions for urban environments a systematic review. In: The First International Conference on Big Data, Small Data, Linked Data and Open Data, (c), pp. 22–28. https://doi.org/978-1-61208-445-9.
    • (2015) , pp. 22-28
    • Ribeiro, F.1    Ferraz, F.S.2    Carolina, M.3
  • 58
    • 84937715193 scopus 로고    scopus 로고
    • Of the importance of motherhood and apple pie: What big data can learn from small data
    • Roger, V.L., Of the importance of motherhood and apple pie: What big data can learn from small data. Circ. Cardiovasc. Quality Outcomes 8:4 (2015), 329–331.
    • (2015) Circ. Cardiovasc. Quality Outcomes , vol.8 , Issue.4 , pp. 329-331
    • Roger, V.L.1
  • 60
    • 84959494943 scopus 로고    scopus 로고
    • No big data without small data: learning health care systems begin and end with the individual patient
    • Sacristán, J.A., Dilla, T., No big data without small data: learning health care systems begin and end with the individual patient. J. Eval. Clin. Practice 21:6 (2015), 1014–1017.
    • (2015) J. Eval. Clin. Practice , vol.21 , Issue.6 , pp. 1014-1017
    • Sacristán, J.A.1    Dilla, T.2
  • 61
    • 84978085746 scopus 로고    scopus 로고
    • Online updating of statistical inference in the big data setting
    • Schifano, E.D., Wu, J., Wang, C., et al. Online updating of statistical inference in the big data setting. Technometrics 58:3 (2016), 393–403.
    • (2016) Technometrics , vol.58 , Issue.3 , pp. 393-403
    • Schifano, E.D.1    Wu, J.2    Wang, C.3
  • 62
    • 85119545259 scopus 로고    scopus 로고
    • Optimizing capacity allocation for big data applications in cloud datacenters. In: Ifip/ieee International Symposium on Integrated Network Management, May
    • Spicugia, S., Chen, L.Y., Bieke, R., et al., 2015. Optimizing capacity allocation for big data applications in cloud datacenters. In: Ifip/ieee International Symposium on Integrated Network Management, May, pp. 511–517.
    • (2015) , pp. 511-517
    • Spicugia, S.1    Chen, L.Y.2    Bieke, R.3
  • 63
    • 85028032527 scopus 로고    scopus 로고
    • Utilization of big data in oil and gas industries using hadoop map reduce technology and hiveql
    • Sakthivadivel, M., Krishnaraj, N., Ramprakash, P., Utilization of big data in oil and gas industries using hadoop map reduce technology and hiveql. Global J. Multidisciplinary Appl. Sci. 1:2 (2013), 52–57.
    • (2013) Global J. Multidisciplinary Appl. Sci. , vol.1 , Issue.2 , pp. 52-57
    • Sakthivadivel, M.1    Krishnaraj, N.2    Ramprakash, P.3
  • 64
    • 84929166422 scopus 로고    scopus 로고
    • Big data for open digital innovation-a research roadmap
    • Srunswicker, S., Bertino, E., Matei, S., Big data for open digital innovation-a research roadmap. Big Data Res. 35:2 (2015), 53–58.
    • (2015) Big Data Res. , vol.35 , Issue.2 , pp. 53-58
    • Srunswicker, S.1    Bertino, E.2    Matei, S.3
  • 65
    • 84867847033 scopus 로고    scopus 로고
    • Dealing with data: challenges and opportunities
    • Staff, S., Dealing with data: challenges and opportunities. Science 331:6018 (2011), 692–693.
    • (2011) Science , vol.331 , Issue.6018 , pp. 692-693
    • Staff, S.1
  • 66
    • 84940460598 scopus 로고    scopus 로고
    • Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways
    • Shi, Q., Abdel-Aty, M., Big data applications in real-time traffic operation and safety monitoring and improvement on urban expressways. Transportation Res. Part C Emerging Technol. 58 (2015), 380–394.
    • (2015) Transportation Res. Part C Emerging Technol. , vol.58 , pp. 380-394
    • Shi, Q.1    Abdel-Aty, M.2
  • 67
    • 85027936282 scopus 로고    scopus 로고
    • Critical analysis of big data challenges and analytical methods
    • Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V., Critical analysis of big data challenges and analytical methods. J. Bus. Res. 70 (2017), 263–286.
    • (2017) J. Bus. Res. , vol.70 , pp. 263-286
    • Sivarajah, U.1    Kamal, M.M.2    Irani, Z.3    Weerakkody, V.4
  • 68
    • 85020799716 scopus 로고    scopus 로고
    • A multidisciplinary perspective of big data in management research
    • Sheng, J., Amankwah-Amoah, J., Wang, X., A multidisciplinary perspective of big data in management research. Int. J. Prod. Econ. 191:2017 (2017), 97–112.
    • (2017) Int. J. Prod. Econ. , vol.191 , Issue.2017 , pp. 97-112
    • Sheng, J.1    Amankwah-Amoah, J.2    Wang, X.3
  • 69
    • 84944152778 scopus 로고    scopus 로고
    • A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression
    • Song, Q., Liang, F., A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression. J. Roy. Stat. Soc. 77:5 (2014), 947–972.
    • (2014) J. Roy. Stat. Soc. , vol.77 , Issue.5 , pp. 947-972
    • Song, Q.1    Liang, F.2
  • 70
    • 84906819799 scopus 로고    scopus 로고
    • Human, model and machine: a complementary approach to big data. In: HCBDR'14 Proceedings of the 2014 Workshop on Human Centered Big Data Research, Raleigh, NC, USA
    • Thomson, R., Lebiere, C., Bennati, S., 2014. Human, model and machine: a complementary approach to big data. In: HCBDR'14 Proceedings of the 2014 Workshop on Human Centered Big Data Research, Raleigh, NC, USA, pp. 27–31.
    • (2014) , pp. 27-31
    • Thomson, R.1    Lebiere, C.2    Bennati, S.3
  • 71
    • 84878579790 scopus 로고    scopus 로고
    • Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications
    • Tao, C., Jochen, T., Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Automation Construction 34:13 (2013), 3–15.
    • (2013) Automation Construction , vol.34 , Issue.13 , pp. 3-15
    • Tao, C.1    Jochen, T.2
  • 72
    • 85028032256 scopus 로고    scopus 로고
    • Worldwide big data technology and services 2012–2015 forecast. IDC 233485 Report.
    • Vesset, D., Woo, B., Morris H.D., et al., 2012. Worldwide big data technology and services 2012–2015 forecast. IDC 233485 Report.
    • (2012)
    • Vesset, D.1    Woo, B.2    Morris, H.D.3
  • 73
    • 84994071517 scopus 로고    scopus 로고
    • Statistical methods and computing for big data
    • Wang, C., Chen, M.H., SChifano, E., Statistical methods and computing for big data. Statistics Its Interface 9:4 (2016), 399–414.
    • (2016) Statistics Its Interface , vol.9 , Issue.4 , pp. 399-414
    • Wang, C.1    Chen, M.H.2    SChifano, E.3
  • 74
    • 85028048015 scopus 로고    scopus 로고
    • Study on the innovation research of safety science based on the safety big data
    • Wang, B., Wu, C., Study on the innovation research of safety science based on the safety big data. Sci. Technol. Manage. Res. 37:1 (2017), 37–43.
    • (2017) Sci. Technol. Manage. Res. , vol.37 , Issue.1 , pp. 37-43
    • Wang, B.1    Wu, C.2
  • 75
    • 84958628838 scopus 로고    scopus 로고
    • Big data and ergonomics methods: a new paradigm for tackling strategic transport safety risks. Appl. Ergon., 53(Pt B)
    • Walker, G., Strathie, A., 2016. Big data and ergonomics methods: a new paradigm for tackling strategic transport safety risks. Appl. Ergon., 53(Pt B), 298–311.
    • (2016) , pp. 298-311
    • Walker, G.1    Strathie, A.2
  • 76
    • 84975471106 scopus 로고    scopus 로고
    • Methodology of Safety Science
    • China Labor and Social Security Publishing House Beijing, CHN
    • Wu, C., Methodology of Safety Science. 2011, China Labor and Social Security Publishing House, Beijing, CHN.
    • (2011)
    • Wu, C.1
  • 77
    • 84990063020 scopus 로고    scopus 로고
    • Safety Statistics
    • China Machine Press Beijing, CHN
    • Wu, C., Wang, T., Safety Statistics. 2014, China Machine Press, Beijing, CHN.
    • (2014)
    • Wu, C.1    Wang, T.2
  • 78
    • 85028046637 scopus 로고    scopus 로고
    • Yu, B. Let us own data science. IMS Bulletin Online, V. 43 (7):1, 13–16.
    • Yu, B., 2014. Let us own data science. IMS Bulletin Online, V. 43 (7):1, 13–16.
    • (2014)
  • 79
    • 84868688911 scopus 로고    scopus 로고
    • Data acquisition and factors impacting productivity of horizontal directional drilling (HDD)
    • Zayed, T., Mahmoud, M., Data acquisition and factors impacting productivity of horizontal directional drilling (HDD). Tunneling Underground Space Technol. 33:33 (2013), 63–72.
    • (2013) Tunneling Underground Space Technol. , vol.33 , Issue.33 , pp. 63-72
    • Zayed, T.1    Mahmoud, M.2
  • 80
    • 85028069913 scopus 로고    scopus 로고
    • Early warning of human roads based on query data from Baidu map: analysis based on Shanghai stampede
    • arXiv:1603.06780
    • Zhou, J.B., Pei, H.B., Wu, H.S., Early warning of human roads based on query data from Baidu map: analysis based on Shanghai stampede. Comput. Sci. – Soc. Inf. Networks, 2016 arXiv:1603.06780.
    • (2016) Comput. Sci. – Soc. Inf. Networks
    • Zhou, J.B.1    Pei, H.B.2    Wu, H.S.3
  • 81
    • 0345498164 scopus 로고
    • Principles and practice of similarity system theory
    • Zhou, M.L., Principles and practice of similarity system theory. Int. J. Gen Syst. 23:1 (1995), 39–48.
    • (1995) Int. J. Gen Syst. , vol.23 , Issue.1 , pp. 39-48
    • Zhou, M.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.