메뉴 건너뛰기




Volumn 30, Issue 4, 2018, Pages 431-448

Big Data technologies: A survey

Author keywords

Big Data; Big Data analytics; Big Data distributions; Hadoop; Machine learning; NoSQL

Indexed keywords


EID: 85020839077     PISSN: 13191578     EISSN: 22131248     Source Type: Journal    
DOI: 10.1016/j.jksuci.2017.06.001     Document Type: Review
Times cited : (728)

References (123)
  • 1
    • 85016191044 scopus 로고    scopus 로고
    • A survey on big data analytics: challenges, open research issues and tools
    • Acharjya, D., Ahmed, K.P., A survey on big data analytics: challenges, open research issues and tools. Int. J. Adv. Comput. Sci. App. 7 (2016), 511–518.
    • (2016) Int. J. Adv. Comput. Sci. App. , vol.7 , pp. 511-518
    • Acharjya, D.1    Ahmed, K.P.2
  • 2
    • 85016191044 scopus 로고    scopus 로고
    • A survey on big data analytics: challenges, open research issues and tools
    • Acharjya, D., Ahmed, K.P., A survey on big data analytics: challenges, open research issues and tools. Int. J. Adv. Comput. Sci. App. 7 (2016), 511–518.
    • (2016) Int. J. Adv. Comput. Sci. App. , vol.7 , pp. 511-518
    • Acharjya, D.1    Ahmed, K.P.2
  • 3
    • 85053566755 scopus 로고    scopus 로고
    • Hadoop mapreduce: a programming model for large scale data processing
    • Aher, S.B., Kulkarni, A.R., Hadoop mapreduce: a programming model for large scale data processing. Am. J. Comput. Sci. Eng. Surv. (AJCSES) 3 (2015), 01–10.
    • (2015) Am. J. Comput. Sci. Eng. Surv. (AJCSES) , vol.3 , pp. 01-10
    • Aher, S.B.1    Kulkarni, A.R.2
  • 5
    • 85053579507 scopus 로고    scopus 로고
    • Big Data Analytics Benchmarking SAS, R, and Mahout. SAS Technical Paper.
    • Ames, A., Abbey, R., Thompson, W., 2013. Big Data Analytics Benchmarking SAS, R, and Mahout. SAS Technical Paper.
    • (2013)
    • Ames, A.1    Abbey, R.2    Thompson, W.3
  • 7
    • 85045326883 scopus 로고    scopus 로고
    • Scalable Big Data Architecture
    • Springer
    • Azarmi, B., Scalable Big Data Architecture. 2016, Springer.
    • (2016)
    • Azarmi, B.1
  • 10
    • 85119222075 scopus 로고    scopus 로고
    • An overview of big data opportunities, applications and tools. In: Intelligent Systems and Computer Vision (ISCV)(pp. 1–6). IEEE. 2015.
    • Benjelloun, F.-Z., Ait Lahcen, A., Belfkih, S., 2015. An overview of big data opportunities, applications and tools. In: Intelligent Systems and Computer Vision (ISCV), 2015 (pp. 1–6). IEEE.
    • (2015)
    • Benjelloun, F.-Z.1    Ait Lahcen, A.2    Belfkih, S.3
  • 12
    • 78650808526 scopus 로고    scopus 로고
    • Pattern recognition
    • Bishop, C.M., Pattern recognition. Mach. Learn. 128 (2006), 1–58.
    • (2006) Mach. Learn. , vol.128 , pp. 1-58
    • Bishop, C.M.1
  • 14
    • 85045316977 scopus 로고    scopus 로고
    • Data Discovery For Dummies, Teradata Special Edition
    • John Wiley & Sons Inc.
    • Brown, M.S., Data Discovery For Dummies, Teradata Special Edition. 2014, John Wiley & Sons Inc.
    • (2014)
    • Brown, M.S.1
  • 15
    • 84900800509 scopus 로고    scopus 로고
    • Data-intensive applications, challenges, techniques and technologies: a survey on big data
    • Chen, C.P., Zhang, C.-Y., Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275 (2014), 314–347.
    • (2014) Inf. Sci. , vol.275 , pp. 314-347
    • Chen, C.P.1    Zhang, C.-Y.2
  • 17
    • 84905021679 scopus 로고    scopus 로고
    • Big Data: Related Technologies, Challenges and Future Prospects
    • Springer
    • Chen, M., Mao, S., Zhang, Y., Leung, V.C., Big Data: Related Technologies, Challenges and Future Prospects. 2014, Springer.
    • (2014)
    • Chen, M.1    Mao, S.2    Zhang, Y.3    Leung, V.C.4
  • 18
    • 85045339701 scopus 로고    scopus 로고
    • Big Data Analytics Using Hadoop Tools
    • (Ph.D. thesis) San Diego State University
    • Chullipparambil, C.P., Big Data Analytics Using Hadoop Tools. (Ph.D. thesis), 2016, San Diego State University.
    • (2016)
    • Chullipparambil, C.P.1
  • 19
    • 0041490641 scopus 로고    scopus 로고
    • Database Systems: Design, Implementation, & Management
    • Cengage Learning
    • Coronel, C., Morris, S., Database Systems: Design, Implementation, & Management. 2016, Cengage Learning.
    • (2016)
    • Coronel, C.1    Morris, S.2
  • 20
    • 85053570196 scopus 로고    scopus 로고
    • A Survey of the state-of-the-art in event processing. In: 11th Workshop on Parallel and Distributed Processing (WSPPD).
    • De carvalho, O.M., Roloff, E., Navaux, P.O., 2013. A Survey of the state-of-the-art in event processing. In: 11th Workshop on Parallel and Distributed Processing (WSPPD).
    • (2013)
    • De carvalho, O.M.1    Roloff, E.2    Navaux, P.O.3
  • 22
    • 85053570008 scopus 로고    scopus 로고
    • Oracle: Big Data for the Enterprise. Oracle White Paper.
    • Dijcks, J.P., 2012. Oracle: Big Data for the Enterprise. Oracle White Paper.
    • (2012)
    • Dijcks, J.P.1
  • 24
    • 85045313510 scopus 로고    scopus 로고
    • Streaming analytics
    • Springer
    • Dinsmore, T.W., Streaming analytics. Disruptive Analytics, 2016, Springer, 117–144.
    • (2016) Disruptive Analytics , pp. 117-144
    • Dinsmore, T.W.1
  • 27
    • 85017075907 scopus 로고    scopus 로고
    • Introduction to big data
    • Springer International Publishing Cham
    • Furht, B., Villanustre, F., Introduction to big data. Big Data Technol. App., 2016, Springer International Publishing, Cham, 3–11.
    • (2016) Big Data Technol. App. , pp. 3-11
    • Furht, B.1    Villanustre, F.2
  • 28
    • 84919389514 scopus 로고    scopus 로고
    • Beyond the hype: big data concepts, methods, and analytics
    • Gandomi, A., Haider, M., Beyond the hype: big data concepts, methods, and analytics. Int. J. Inf. Manage. 35 (2015), 137–144.
    • (2015) Int. J. Inf. Manage. , vol.35 , pp. 137-144
    • Gandomi, A.1    Haider, M.2
  • 29
    • 84860493757 scopus 로고    scopus 로고
    • HBase: The Definitive Guide
    • O'Reilly Media Inc.
    • George, L., HBase: The Definitive Guide. 2011, O'Reilly Media Inc.
    • (2011)
    • George, L.1
  • 30
    • 84959543487 scopus 로고    scopus 로고
    • Getting Started with Greenplum for Big Data Analytics
    • Packt Publishing Ltd.
    • Gollapudi, S., Getting Started with Greenplum for Big Data Analytics. 2013, Packt Publishing Ltd.
    • (2013)
    • Gollapudi, S.1
  • 31
    • 84897567802 scopus 로고    scopus 로고
    • Apache Flume: Distributed Log Collection for Hadoop
    • Packt Publishing Ltd.
    • Hoffman, S., Apache Flume: Distributed Log Collection for Hadoop. 2013, Packt Publishing Ltd.
    • (2013)
    • Hoffman, S.1
  • 32
    • 84897567802 scopus 로고    scopus 로고
    • Apache Flume: Distributed Log Collection for Hadoop
    • Packt Publishing Ltd.
    • Hoffman, S., Apache Flume: Distributed Log Collection for Hadoop. 2015, Packt Publishing Ltd.
    • (2015)
    • Hoffman, S.1
  • 33
    • 85007610529 scopus 로고    scopus 로고
    • Accurate analysis of a movie recommendation service with linked data on hadoop and mahout
    • Springer
    • Hsieh, M.-Y., Li, G.-L., Liao, M.-H., Chou, W.-K., Li, K.-C., Accurate analysis of a movie recommendation service with linked data on hadoop and mahout. Frontier Computing, 2016, Springer, 551–560.
    • (2016) Frontier Computing , pp. 551-560
    • Hsieh, M.-Y.1    Li, G.-L.2    Liao, M.-H.3    Chou, W.-K.4    Li, K.-C.5
  • 34
    • 85012023604 scopus 로고    scopus 로고
    • Dynamic variable precision rough set approach for probabilistic set-valued information systems
    • Huang, Y., Li, T., Luo, C., Fujita, H., Horng, S.-J., Dynamic variable precision rough set approach for probabilistic set-valued information systems. Knowledge-Based Syst. 122 (2017), 131–147.
    • (2017) Knowledge-Based Syst. , vol.122 , pp. 131-147
    • Huang, Y.1    Li, T.2    Luo, C.3    Fujita, H.4    Horng, S.-J.5
  • 35
    • 85008452895 scopus 로고    scopus 로고
    • Matrix-based dynamic updating rough fuzzy approximations for data mining
    • Huang, Y., Li, T., Luo, C., Fujita, H., Horng, S.-J., Matrix-based dynamic updating rough fuzzy approximations for data mining. Knowledge-Based Syst. 119 (2017), 273–283.
    • (2017) Knowledge-Based Syst. , vol.119 , pp. 273-283
    • Huang, Y.1    Li, T.2    Luo, C.3    Fujita, H.4    Horng, S.-J.5
  • 36
  • 37
    • 85045306927 scopus 로고    scopus 로고
    • Apache Oozie: The Workflow Scheduler for Hadoop
    • O'Reilly Media Inc.
    • Islam, M.K., Srinivasan, A., Apache Oozie: The Workflow Scheduler for Hadoop. 2015, O'Reilly Media Inc.
    • (2015)
    • Islam, M.K.1    Srinivasan, A.2
  • 38
    • 85045307910 scopus 로고    scopus 로고
    • A survey on approaches to efficient classification of data streams using concept drift
    • Jadhav, A., Deshpande, L., A survey on approaches to efficient classification of data streams using concept drift. Int. J., 4, 2016.
    • (2016) Int. J. , vol.4
    • Jadhav, A.1    Deshpande, L.2
  • 39
    • 85027258375 scopus 로고    scopus 로고
    • Instant Apache Sqoop
    • Packt Publishing Ltd.
    • Jain, A., Instant Apache Sqoop. 2013, Packt Publishing Ltd.
    • (2013)
    • Jain, A.1
  • 40
    • 84941125465 scopus 로고    scopus 로고
    • ZooKeeper: Distributed Process Coordination
    • O'Reilly Media Inc.
    • Junqueira, F., Reed, B., ZooKeeper: Distributed Process Coordination. 2013, O'Reilly Media Inc.
    • (2013)
    • Junqueira, F.1    Reed, B.2
  • 41
    • 85045301486 scopus 로고    scopus 로고
    • Apache Oozie The Workflow Scheduler for Hadoop
    • O'Reilly Media Inc.
    • Kamrul Islam, M., Srinivasan, A., Apache Oozie The Workflow Scheduler for Hadoop. 2014, O'Reilly Media Inc.
    • (2014)
    • Kamrul Islam, M.1    Srinivasan, A.2
  • 42
    • 84980338925 scopus 로고    scopus 로고
    • Big data and analytics in healthcare: introduction to the special section
    • Kankanhalli, A., Hahn, J., Tan, S., Gao, G., Big data and analytics in healthcare: introduction to the special section. Inf. Syst. Front. 18 (2016), 233–235.
    • (2016) Inf. Syst. Front. , vol.18 , pp. 233-235
    • Kankanhalli, A.1    Hahn, J.2    Tan, S.3    Gao, G.4
  • 43
    • 84941043419 scopus 로고    scopus 로고
    • Fast Data Processing with Spark
    • Packt Publishing Ltd.
    • Karau, H., Fast Data Processing with Spark. 2013, Packt Publishing Ltd.
    • (2013)
    • Karau, H.1
  • 45
    • 85053565565 scopus 로고    scopus 로고
    • The forrester wave: Enterprise hadoop solutions, q1 2012. Forrester.
    • Kobielus, J.G., 2012. The forrester wave: Enterprise hadoop solutions, q1 2012. Forrester.
    • (2012)
    • Kobielus, J.G.1
  • 46
    • 85013843770 scopus 로고    scopus 로고
    • Data Warehousing in the Age of Big Data
    • 1st ed. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA
    • Krishnan, K., Data Warehousing in the Age of Big Data. 1st ed., 2013, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
    • (2013)
    • Krishnan, K.1
  • 48
    • 85013974691 scopus 로고    scopus 로고
    • A survey of open source tools for machine learning with big data in the hadoop ecosystem
    • Landset, S., Khoshgoftaar, T.M., Richter, A.N., Hasanin, T., A survey of open source tools for machine learning with big data in the hadoop ecosystem. J. Big Data, 2, 2015, 1.
    • (2015) J. Big Data , vol.2 , pp. 1
    • Landset, S.1    Khoshgoftaar, T.M.2    Richter, A.N.3    Hasanin, T.4
  • 49
    • 85012284270 scopus 로고    scopus 로고
    • Big data: dimensions, evolution, impacts, and challenges
    • Lee, I., Big data: dimensions, evolution, impacts, and challenges. Bus. Horizons, 2017.
    • (2017) Bus. Horizons
    • Lee, I.1
  • 50
    • 85053569186 scopus 로고    scopus 로고
    • Big Data for Development: Challenges & Opportunities. UN Global Pulse.
    • Letouzé E., 2012. Big Data for Development: Challenges & Opportunities. UN Global Pulse.
    • (2012)
    • Letouzé, E.1
  • 53
    • 84934304686 scopus 로고    scopus 로고
    • Professional Hadoop Solutions
    • John Wiley & Sons
    • Lublinsky, B., Smith, K.T., Yakubovich, A., Professional Hadoop Solutions. 2013, John Wiley & Sons.
    • (2013)
    • Lublinsky, B.1    Smith, K.T.2    Yakubovich, A.3
  • 54
    • 84991706032 scopus 로고    scopus 로고
    • Efficient updating of probabilistic approximations with incremental objects
    • Luo, C., Li, T., Chen, H., Fujita, H., Yi, Z., Efficient updating of probabilistic approximations with incremental objects. Knowledge-Based Syst. 109 (2016), 71–83.
    • (2016) Knowledge-Based Syst. , vol.109 , pp. 71-83
    • Luo, C.1    Li, T.2    Chen, H.3    Fujita, H.4    Yi, Z.5
  • 55
    • 84991833935 scopus 로고    scopus 로고
    • Big data application in biomedical research and health care: a literature review
    • Luo, J., Wu, M., Gopukumar, D., Zhao, Y., Big data application in biomedical research and health care: a literature review. Biomed. Inf. Insights, 8, 2016, 1.
    • (2016) Biomed. Inf. Insights , vol.8 , pp. 1
    • Luo, J.1    Wu, M.2    Gopukumar, D.3    Zhao, Y.4
  • 56
    • 85061025193 scopus 로고    scopus 로고
    • Big data analysis using hadoop components like flume, mapreduce, pig and hive
    • Lydia, E.L., Swarup, M.B., Big data analysis using hadoop components like flume, mapreduce, pig and hive. Int. J. Sci. Eng. Comput. Technol., 5, 2015, 390.
    • (2015) Int. J. Sci. Eng. Comput. Technol. , vol.5 , pp. 390
    • Lydia, E.L.1    Swarup, M.B.2
  • 58
    • 84901652428 scopus 로고    scopus 로고
    • Comparative survey of object serialization techniques and the programming supports
    • Maeda, K., Comparative survey of object serialization techniques and the programming supports. J. Commun. Comput. 9 (2012), 920–928.
    • (2012) J. Commun. Comput. , vol.9 , pp. 920-928
    • Maeda, K.1
  • 59
    • 85026507484 scopus 로고    scopus 로고
    • Large-scale data analytics tools: apache hive, pig, and hbase
    • Springer
    • Maheswari, N., Sivagami, M., Large-scale data analytics tools: apache hive, pig, and hbase. Data Sci. Big Data Comput., 2016, Springer, 191–220.
    • (2016) Data Sci. Big Data Comput. , pp. 191-220
    • Maheswari, N.1    Sivagami, M.2
  • 61
    • 84956999976 scopus 로고    scopus 로고
    • Data Just Right: Introduction to Large-scale Data & Analytics
    • Addison-Wesley
    • Manoochehri, M., Data Just Right: Introduction to Large-scale Data & Analytics. 2013, Addison-Wesley.
    • (2013)
    • Manoochehri, M.1
  • 63
    • 84871857828 scopus 로고    scopus 로고
    • Big Data: the management revolution
    • McAfee, A., Brynjolfsson, E., et al. Big Data: the management revolution. Harvard Bus. Rev. 90 (2012), 60–68.
    • (2012) Harvard Bus. Rev. , vol.90 , pp. 60-68
    • McAfee, A.1    Brynjolfsson, E.2
  • 64
    • 84948413422 scopus 로고    scopus 로고
    • Cloudera Administration Handbook
    • Packt Publishing Ltd.
    • Menon, R., Cloudera Administration Handbook. 2014, Packt Publishing Ltd.
    • (2014)
    • Menon, R.1
  • 65
    • 85053566587 scopus 로고    scopus 로고
    • Oracle Exalytics in-Memory Machine: A brief Introduction.
    • Murthy, B., Goel, M., Lee, A., Granholm, D., Cheung, S., 2011. Oracle Exalytics in-Memory Machine: A brief Introduction.
    • (2011)
    • Murthy, B.1    Goel, M.2    Lee, A.3    Granholm, D.4    Cheung, S.5
  • 66
    • 85045321333 scopus 로고    scopus 로고
    • HDInsight Essentials
    • Packt Publishing Ltd.
    • Nadipalli, R., HDInsight Essentials. 2015, Packt Publishing Ltd.
    • (2015)
    • Nadipalli, R.1
  • 67
    • 84866062110 scopus 로고    scopus 로고
    • Computational intelligence for heart disease diagnosis: a medical knowledge driven approach
    • Nahar, J., Imam, T., Tickle, K.S., Chen, Y.-P.P., Computational intelligence for heart disease diagnosis: a medical knowledge driven approach. Expert Syst. App. 40 (2013), 96–104.
    • (2013) Expert Syst. App. , vol.40 , pp. 96-104
    • Nahar, J.1    Imam, T.2    Tickle, K.S.3    Chen, Y.-P.P.4
  • 71
    • 84933061558 scopus 로고    scopus 로고
    • Enterprise Data Workflows with Cascading
    • O'Reilly Media Inc.
    • Nathan, P., Enterprise Data Workflows with Cascading., 2013, O'Reilly Media Inc.
    • (2013)
    • Nathan, P.1
  • 72
    • 85053573504 scopus 로고    scopus 로고
    • Comparison and classification of nosql databases for big data. Int. J. Big Data Intell. (In press).
    • Oussous, A., Benjelloun, F.-Z., AitLahcen, A., Belfkih, S., Comparison and classification of nosql databases for big data. Int. J. Big Data Intell. (In press).
    • Oussous, A.1    Benjelloun, F.-Z.2    AitLahcen, A.3    Belfkih, S.4
  • 73
    • 84873292703 scopus 로고    scopus 로고
    • The design of polynomial function-based neural network predictors for detection of software defects
    • Park, B.-J., Oh, S.-K., Pedrycz, W., The design of polynomial function-based neural network predictors for detection of software defects. Inf. Sci. 229 (2013), 40–57.
    • (2013) Inf. Sci. , vol.229 , pp. 40-57
    • Park, B.-J.1    Oh, S.-K.2    Pedrycz, W.3
  • 74
    • 84982112953 scopus 로고    scopus 로고
    • Comparative study of big data computing and storage tools: a review
    • Prasad, B.R., Agarwal, S., Comparative study of big data computing and storage tools: a review. Int. J. Database Theory App. 9 (2016), 45–66.
    • (2016) Int. J. Database Theory App. , vol.9 , pp. 45-66
    • Prasad, B.R.1    Agarwal, S.2
  • 77
    • 85053572990 scopus 로고    scopus 로고
    • Chukwa: a system for reliable large-scale log collection. In: LISA. vol. 10.
    • Rabkin, A., Katz, R.H., 2010. Chukwa: a system for reliable large-scale log collection. In: LISA. vol. 10. pp. 1–15.
    • (2010) , pp. 1-15
    • Rabkin, A.1    Katz, R.H.2
  • 78
    • 85053566746 scopus 로고    scopus 로고
    • A study on big data techniques and applications
    • Radha, K., Rao, B.T., A study on big data techniques and applications. Int. J. Adv. Appl. Sci. 5 (2016), 101–108.
    • (2016) Int. J. Adv. Appl. Sci. , vol.5 , pp. 101-108
    • Radha, K.1    Rao, B.T.2
  • 80
    • 85053570519 scopus 로고    scopus 로고
    • Introduction to Distributed Computing with pbdR at the UMBC High Performance Computing Facility. Technical Report HPCF-2013-2, UMBC High Performance Computing Facility, University of Maryland, Baltimore County.
    • Raim, A.M., 2013. Introduction to Distributed Computing with pbdR at the UMBC High Performance Computing Facility. Technical Report HPCF-2013-2, UMBC High Performance Computing Facility, University of Maryland, Baltimore County.
    • (2013)
    • Raim, A.M.1
  • 81
    • 84985963184 scopus 로고    scopus 로고
    • Big data analytics
    • Rajaraman, V., Big data analytics. Resonance 21 (2016), 695–716.
    • (2016) Resonance , vol.21 , pp. 695-716
    • Rajaraman, V.1
  • 82
    • 85053576749 scopus 로고    scopus 로고
    • 1704.06825 Deep learning for medical image processing: Overview, challenges and future. arXiv preprint arXiv
    • Razzak, M.I., Naz, S., Zaib, A., 2017. Deep learning for medical image processing: Overview, challenges and future. arXiv preprint arXiv: 1704.06825.
    • (2017)
    • Razzak, M.I.1    Naz, S.2    Zaib, A.3
  • 83
    • 84906873734 scopus 로고    scopus 로고
    • On the use of mapreduce for imbalanced big data using random forest
    • del Río, S., López, V., Benítez, J.M., Herrera, F., On the use of mapreduce for imbalanced big data using random forest. Inf. Sci. 285 (2014), 112–137.
    • (2014) Inf. Sci. , vol.285 , pp. 112-137
    • del Río, S.1    López, V.2    Benítez, J.M.3    Herrera, F.4
  • 84
    • 85053572595 scopus 로고    scopus 로고
    • Big data 2.0 processing systems: a survey. Springer Briefs in Computer Science.
    • Sakr, S., 2016. Big data 2.0 processing systems: a survey. Springer Briefs in Computer Science.
    • (2016)
    • Sakr, S.1
  • 85
    • 85044818823 scopus 로고    scopus 로고
    • General-purpose big data processing systems
    • Springer
    • Sakr, S., General-purpose big data processing systems. Big Data 2.0 Processing Systems, 2016, Springer, 15–39.
    • (2016) Big Data 2.0 Processing Systems , pp. 15-39
    • Sakr, S.1
  • 86
    • 85053577898 scopus 로고    scopus 로고
    • Introduction
    • Springer International Publishing Cham
    • Sakr, S., Introduction. Big Data 2.0 Processing Systems: A Survey, 2016, Springer International Publishing, Cham, 1–13.
    • (2016) Big Data 2.0 Processing Systems: A Survey , pp. 1-13
    • Sakr, S.1
  • 87
    • 85044824798 scopus 로고    scopus 로고
    • Large-scale stream processing systems
    • Springer
    • Sakr, S., Large-scale stream processing systems. Big Data 2.0 Processing Systems, 2016, Springer, 75–89.
    • (2016) Big Data 2.0 Processing Systems , pp. 75-89
    • Sakr, S.1
  • 88
    • 85006856715 scopus 로고    scopus 로고
    • Technological, organizational and environmental security and privacy issues of big data: A literature review
    • Salleh, K.A., Janczewski, L., Technological, organizational and environmental security and privacy issues of big data: A literature review. Procedia Comput. Sci. 100 (2016), 19–28.
    • (2016) Procedia Comput. Sci. , vol.100 , pp. 19-28
    • Salleh, K.A.1    Janczewski, L.2
  • 89
    • 84905178199 scopus 로고    scopus 로고
    • Hadoop Operations
    • O'Reilly Media Inc.
    • Sammer, E., Hadoop Operations. 2012, O'Reilly Media Inc.
    • (2012)
    • Sammer, E.1
  • 91
    • 84912060418 scopus 로고    scopus 로고
    • Introducing HDInsight
    • Springer
    • Sarkar, D., Introducing HDInsight. Pro Microsoft HDInsight, 2014, Springer, 1–12.
    • (2014) Pro Microsoft HDInsight , pp. 1-12
    • Sarkar, D.1
  • 92
    • 84923198206 scopus 로고    scopus 로고
    • Big Data: Understanding How Data Powers Big Business
    • John Wiley & Sons
    • Schmarzo, B., Big Data: Understanding How Data Powers Big Business. 2013, John Wiley & Sons.
    • (2013)
    • Schmarzo, B.1
  • 94
    • 85045338907 scopus 로고    scopus 로고
    • Hadoop Application Architectures
    • O'Reilly Media Inc.
    • Shapira, G., Seidman, J., Malaska, T., Grover, M., Hadoop Application Architectures. 2015, O'Reilly Media Inc.
    • (2015)
    • Shapira, G.1    Seidman, J.2    Malaska, T.3    Grover, M.4
  • 96
    • 85045297395 scopus 로고    scopus 로고
    • A study of tools, techniques, and trends for big data analytics
    • Shireesha, R., Bhutada, S., A study of tools, techniques, and trends for big data analytics. IJACTA 4 (2016), 152–158.
    • (2016) IJACTA , vol.4 , pp. 152-158
    • Shireesha, R.1    Bhutada, S.2
  • 97
    • 85018669180 scopus 로고    scopus 로고
    • Big data storage technologies: a survey
    • Siddiqa, A., Karim, A., Gani, A., Big data storage technologies: a survey. Frontiers, 1, 2016.
    • (2016) Frontiers , vol.1
    • Siddiqa, A.1    Karim, A.2    Gani, A.3
  • 99
    • 84975167196 scopus 로고    scopus 로고
    • Interactive granular computing. Granular
    • Skowron, A., Jankowski, A., Dutta, S., Interactive granular computing. Granular. Computing 1 (2016), 95–113.
    • (2016) Computing , vol.1 , pp. 95-113
    • Skowron, A.1    Jankowski, A.2    Dutta, S.3
  • 100
    • 85051581509 scopus 로고    scopus 로고
    • Big Data Analytics Strategies for the Smart Grid
    • CRC Press
    • Stimmel, C.L., Big Data Analytics Strategies for the Smart Grid. 2014, CRC Press.
    • (2014)
    • Stimmel, C.L.1
  • 102
    • 85009476105 scopus 로고    scopus 로고
    • Dynamic financial distress prediction with concept drift based on time weighting combined with adaboost support vector machine ensemble
    • Sun, J., Fujita, H., Chen, P., Li, H., Dynamic financial distress prediction with concept drift based on time weighting combined with adaboost support vector machine ensemble. Knowledge-Based Syst. 120 (2017), 4–14.
    • (2017) Knowledge-Based Syst. , vol.120 , pp. 4-14
    • Sun, J.1    Fujita, H.2    Chen, P.3    Li, H.4
  • 103
    • 84946564866 scopus 로고    scopus 로고
    • R Language Definition
    • R foundation for statistical computing Austria
    • Team, R.C., R Language Definition. 2000, R foundation for statistical computing, Austria.
    • (2000)
    • Team, R.C.1
  • 106
    • 85045332764 scopus 로고    scopus 로고
    • Using apache sqoop
    • Springer
    • Vohra, D., Using apache sqoop. Pro Docker, 2016, Springer, 151–183.
    • (2016) Pro Docker , pp. 151-183
    • Vohra, D.1
  • 108
    • 84944324075 scopus 로고    scopus 로고
    • Hcatalog and hadoop in the enterprise
    • Springer
    • Wadkar, S., Siddalingaiah, M., Hcatalog and hadoop in the enterprise. Pro Apache Hadoop, 2014, Springer, 271–282.
    • (2014) Pro Apache Hadoop , pp. 271-282
    • Wadkar, S.1    Siddalingaiah, M.2
  • 109
    • 84978904004 scopus 로고    scopus 로고
    • Towards felicitous decision making: an overview on challenges and trends of big data
    • Wang, H., Xu, Z., Fujita, H., Liu, S., Towards felicitous decision making: an overview on challenges and trends of big data. Inf. Sci. 367 (2016), 747–765.
    • (2016) Inf. Sci. , vol.367 , pp. 747-765
    • Wang, H.1    Xu, Z.2    Fujita, H.3    Liu, S.4
  • 110
    • 85007001299 scopus 로고    scopus 로고
    • An overview on the roles of fuzzy set techniques in big data processing: trends, challenges and opportunities
    • Wang, H., Xu, Z., Pedrycz, W., An overview on the roles of fuzzy set techniques in big data processing: trends, challenges and opportunities. Knowledge-Based Syst. 118 (2017), 15–30.
    • (2017) Knowledge-Based Syst. , vol.118 , pp. 15-30
    • Wang, H.1    Xu, Z.2    Pedrycz, W.3
  • 111
    • 84992370256 scopus 로고    scopus 로고
    • Machine learning in big data
    • Wang, L., Machine learning in big data. Int. J. Adv. Appl. Sci. 4 (2016), 117–123.
    • (2016) Int. J. Adv. Appl. Sci. , vol.4 , pp. 117-123
    • Wang, L.1
  • 112
    • 84864153221 scopus 로고    scopus 로고
    • Multiclass imbalance problems: analysis and potential solutions
    • Wang, S., Yao, X., Multiclass imbalance problems: analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42 (2012), 1119–1130.
    • (2012) IEEE Trans. Syst. Man Cybern. Part B (Cybern.) , vol.42 , pp. 1119-1130
    • Wang, S.1    Yao, X.2
  • 113
    • 84872615635 scopus 로고    scopus 로고
    • Obama Administration Unveils Big Data Initiative: Announces 200 Million in New R&D Investments
    • Office of Science and Technology Policy Washington, DC
    • Weiss, R., Zgorski, L., Obama Administration Unveils Big Data Initiative: Announces 200 Million in New R&D Investments. 2012, Office of Science and Technology Policy, Washington, DC.
    • (2012)
    • Weiss, R.1    Zgorski, L.2
  • 114
    • 74049113467 scopus 로고    scopus 로고
    • Hadoop: The Definitive Guide
    • O'Reilly Media Inc.
    • White, T., Hadoop: The Definitive Guide. 2012, O'Reilly Media Inc.
    • (2012)
    • White, T.1
  • 116
    • 84868621497 scopus 로고    scopus 로고
    • Acosampling: An ant colony optimization-based undersampling method for classifying imbalanced dna microarray data
    • Yu, H., Ni, J., Zhao, J., Acosampling: An ant colony optimization-based undersampling method for classifying imbalanced dna microarray data. Neurocomputing 101 (2013), 309–318.
    • (2013) Neurocomputing , vol.101 , pp. 309-318
    • Yu, H.1    Ni, J.2    Zhao, J.3
  • 117
    • 84942770326 scopus 로고    scopus 로고
    • Comparative study between incremental and ensemble learning on data streams: case study
    • Zang, W., Zhang, P., Zhou, C., Guo, L., Comparative study between incremental and ensemble learning on data streams: case study. J. Big Data 1 (2014), 1–16.
    • (2014) J. Big Data , vol.1 , pp. 1-16
    • Zang, W.1    Zhang, P.2    Zhou, C.3    Guo, L.4
  • 118
    • 84862809634 scopus 로고    scopus 로고
    • Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems
    • Zhang, J., Li, T., Ruan, D., Liu, D., Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems. Int. J. Approximate Reasoning 53 (2012), 620–635.
    • (2012) Int. J. Approximate Reasoning , vol.53 , pp. 620-635
    • Zhang, J.1    Li, T.2    Ruan, D.3    Liu, D.4
  • 119
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods
    • Zhou, L., Performance of corporate bankruptcy prediction models on imbalanced dataset: the effect of sampling methods. Knowledge-Based Syst. 41 (2013), 16–25.
    • (2013) Knowledge-Based Syst. , vol.41 , pp. 16-25
    • Zhou, L.1
  • 120
    • 85015734131 scopus 로고    scopus 로고
    • Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification
    • Zhou, L., Fujita, H., Posterior probability based ensemble strategy using optimizing decision directed acyclic graph for multi-class classification. Inf. Sci. 400 (2017), 142–156.
    • (2017) Inf. Sci. , vol.400 , pp. 142-156
    • Zhou, L.1    Fujita, H.2
  • 121
    • 84995752440 scopus 로고    scopus 로고
    • One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies
    • Zhou, L., Wang, Q., Fujita, H., One versus one multi-class classification fusion using optimizing decision directed acyclic graph for predicting listing status of companies. Inf. Fusion 36 (2017), 80–89.
    • (2017) Inf. Fusion , vol.36 , pp. 80-89
    • Zhou, L.1    Wang, Q.2    Fujita, H.3
  • 122
    • 84866896733 scopus 로고    scopus 로고
    • Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data
    • McGraw-Hill Osborne Media
    • Zikopoulos, P., Eaton, C., et al. Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. 2011, McGraw-Hill Osborne Media.
    • (2011)
    • Zikopoulos, P.1    Eaton, C.2
  • 123
    • 84878652935 scopus 로고    scopus 로고
    • Harness the Power of Big Data The IBM Big Data Platform
    • McGraw Hill Professional
    • Zikopoulos, P., Parasuraman, K., Deutsch, T., Giles, J., Corrigan, D., et al. Harness the Power of Big Data The IBM Big Data Platform. 2012, McGraw Hill Professional.
    • (2012)
    • Zikopoulos, P.1    Parasuraman, K.2    Deutsch, T.3    Giles, J.4    Corrigan, D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.