메뉴 건너뛰기




Volumn 7, Issue 4, 2014, Pages 552-574

Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

Author keywords

Dissipative particle dynamics; Molecular dynamics; Multiscale simulations; Platelets

Indexed keywords

ANALYTIC METHOD; ARTICLE; BLOOD CLOTTING; BLOOD FLOW; CELL INTERACTION; CELL STRUCTURE; COARSE GRAINED MOLECULAR DYNAMICS; DISSIPATIVE PARTICLE DYNAMICS; FLOW KINETICS; MODEL; MOLECULAR DYNAMICS; SHEAR STRESS; SIMULATION; THROMBOCYTE; THROMBOCYTE ACTIVATION; THROMBOCYTE DEFORMABILITY; THROMBOCYTE FUNCTION AND CHARACTERISTICS; THROMBOCYTE MEMBRANE; VISCOSITY; YOUNG MODULUS;

EID: 85027956425     PISSN: 18655025     EISSN: 18655033     Source Type: Journal    
DOI: 10.1007/s12195-014-0356-5     Document Type: Article
Times cited : (58)

References (77)
  • 1
    • 34548183335 scopus 로고    scopus 로고
    • Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies
    • Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31:677–688, 2007.
    • (2007) Artif. Organs , vol.31 , pp. 677-688
    • Alemu, Y.1    Bluestein, D.2
  • 2
    • 77956393128 scopus 로고    scopus 로고
    • Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve
    • Alemu, Y., G. Girdhar, M. Xenos, J. Sheriff, J. Jesty, S. Einav, and D. Bluestein. Design optimization of a mechanical heart valve for reducing valve thrombogenicity—a case study with ATS valve. ASAIO J. 56:389–396, 2010.
    • (2010) ASAIO J , vol.56 , pp. 389-396
    • Alemu, Y.1    Girdhar, G.2    Xenos, M.3    Sheriff, J.4    Jesty, J.5    Einav, S.6    Bluestein, D.7
  • 4
    • 43449112045 scopus 로고    scopus 로고
    • Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow
    • AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann. Biomed. Eng. 36:905–920, 2008.
    • (2008) Ann. Biomed. Eng , vol.36 , pp. 905-920
    • AlMomani, T.1    Udaykumar, H.S.2    Marshall, J.S.3    Chandran, K.B.4
  • 5
  • 6
    • 0034837086 scopus 로고    scopus 로고
    • Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics
    • Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25:341–347, 2001.
    • (2001) Artif. Organs , vol.25 , pp. 341-347
    • Apel, J.1    Paul, R.2    Klaus, S.3    Siess, T.4    Reul, H.5
  • 9
    • 4544287269 scopus 로고    scopus 로고
    • Flow-induced platelet activation in mechanical heart valves
    • Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in mechanical heart valves. J. Heart Valve Dis. 13:501–508, 2004.
    • (2004) J. Heart Valve Dis , vol.13 , pp. 501-508
    • Bluestein, D.1    Yin, W.2    Affeld, K.3    Jesty, J.4
  • 10
    • 38849131967 scopus 로고    scopus 로고
    • Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte
    • Chee, C. Y., H. P. Lee, and C. Lu. Using 3D fluid–structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A 372:1357–1362, 2008.
    • (2008) Phys. Lett. A , vol.372 , pp. 1357-1362
    • Chee, C.Y.1    Lee, H.P.2    Lu, C.3
  • 11
    • 84877773728 scopus 로고    scopus 로고
    • Analysis of Linpack and power efficiencies of the world’s TOP500 supercomputers
    • Deng, Y., P. Zhang, C. Marques, R. Powell, and L. Zhang. Analysis of Linpack and power efficiencies of the world’s TOP500 supercomputers. Parallel Comput. 39:271–279, 2013.
    • (2013) Parallel Comput , vol.39 , pp. 271-279
    • Deng, Y.1    Zhang, P.2    Marques, C.3    Powell, R.4    Zhang, L.5
  • 12
    • 84861367246 scopus 로고    scopus 로고
    • Biomolecular simulation: a computational microscope for molecular biology
    • Dror, R. O., R. M. Dirks, J. P. Grossman, H. Xu, and D. E. Shaw. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–452, 2012.
    • (2012) Annu. Rev. Biophys , vol.41 , pp. 429-452
    • Dror, R.O.1    Dirks, R.M.2    Grossman, J.P.3    Xu, H.4    Shaw, D.E.5
  • 13
    • 84956259119 scopus 로고
    • Statistical mechanics of dissipative particle dynamics
    • Espanol, P., and P. Warren. Statistical mechanics of dissipative particle dynamics. EPL (Europhysics Letters) 30:191, 1995.
    • (1995) EPL (Europhysics Letters) , vol.30 , pp. 191
    • Espanol, P.1    Warren, P.2
  • 14
    • 77952786405 scopus 로고    scopus 로고
    • A multiscale red blood cell model with accurate mechanics, rheology, and dynamics
    • Fedosov, D. A., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98:2215–2225, 2010.
    • (2010) Biophys. J , vol.98 , pp. 2215-2225
    • Fedosov, D.A.1    Caswell, B.2    Karniadakis, G.E.3
  • 16
    • 84899463517 scopus 로고    scopus 로고
    • Computational biorheology of human blood flow in health and disease
    • Fedosov, D. A., M. Dao, G. E. Karniadakis, and S. Suresh. Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42:368–387, 2014.
    • (2014) Ann. Biomed. Eng , vol.42 , pp. 368-387
    • Fedosov, D.A.1    Dao, M.2    Karniadakis, G.E.3    Suresh, S.4
  • 17
    • 58149247906 scopus 로고    scopus 로고
    • Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes
    • Fedosov, D. A., and G. E. Karniadakis. Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes. J. Comput. Phys. 228:1157–1171, 2009.
    • (2009) J. Comput. Phys , vol.228 , pp. 1157-1171
    • Fedosov, D.A.1    Karniadakis, G.E.2
  • 18
    • 84855281835 scopus 로고    scopus 로고
    • Multiscale modeling of red blood cell mechanics and blood flow in malaria
    • Fedosov, D. A., H. Lei, B. Caswell, S. Suresh, and G. E. Karniadakis. Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput. Biol. 7:e1002270, 2011.
    • (2011) PLoS Comput. Biol , vol.7 , pp. e1002270
    • Fedosov, D.A.1    Lei, H.2    Caswell, B.3    Suresh, S.4    Karniadakis, G.E.5
  • 20
    • 38049054069 scopus 로고    scopus 로고
    • Velocity limit in DPD simulations of wall-bounded flows
    • Fedosov, D. A., I. V. Pivkin, and G. E. Karniadakis. Velocity limit in DPD simulations of wall-bounded flows. J. Comput. Phys. 227:2540–2559, 2008.
    • (2008) J. Comput. Phys , vol.227 , pp. 2540-2559
    • Fedosov, D.A.1    Pivkin, I.V.2    Karniadakis, G.E.3
  • 21
    • 84859884942 scopus 로고    scopus 로고
    • Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD
    • Feng, R., M. Xenos, G. Girdhar, W. Kang, J. W. Davenport, Y. F. Deng, and D. Bluestein. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Biomech. Model. Mechanobiol. 11:119–129, 2012.
    • (2012) Biomech. Model. Mechanobiol , vol.11 , pp. 119-129
    • Feng, R.1    Xenos, M.2    Girdhar, G.3    Kang, W.4    Davenport, J.W.5    Deng, Y.F.6    Bluestein, D.7
  • 22
    • 49549084853 scopus 로고    scopus 로고
    • Modelling thrombosis using dissipative particle dynamics method
    • Filipovic, N., M. Kojic, and A. Tsuda. Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A 366:3265–3279, 2008.
    • (2008) Philos. Trans. R. Soc. A , vol.366 , pp. 3265-3279
    • Filipovic, N.1    Kojic, M.2    Tsuda, A.3
  • 23
    • 39149085695 scopus 로고    scopus 로고
    • Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm
    • Filipovic, N., D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, and A. Tsuda. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm. Microvasc. Res. 75:279–284, 2008.
    • (2008) Microvasc. Res , vol.75 , pp. 279-284
    • Filipovic, N.1    Ravnic, D.2    Kojic, M.3    Mentzer, S.J.4    Haber, S.5    Tsuda, A.6
  • 24
    • 0020008173 scopus 로고
    • Human platelet size, shape, and related functions in health and disease
    • Frojmovic, M. M., and J. G. Milton. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 62:185–261, 1982.
    • (1982) Physiol. Rev , vol.62 , pp. 185-261
    • Frojmovic, M.M.1    Milton, J.G.2
  • 25
    • 0003437218 scopus 로고
    • Addison-Wesley Pub. Co., Reading, MA:
    • Goldstein, H. Classical mechanics (2nd ed.). Reading, MA: Addison-Wesley Pub. Co., 1980.
    • (1980) Classical mechanics
    • Goldstein, H.1
  • 26
    • 5544242655 scopus 로고    scopus 로고
    • Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation
    • Groot, R., and P. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.
    • (1997) J. Chem. Phys , vol.107 , pp. 4423-4435
    • Groot, R.1    Warren, P.2
  • 27
    • 0032033099 scopus 로고    scopus 로고
    • Quantification of the passive mechanical properties of the resting platelet
    • Haga, J. H., A. J. Beaudoin, J. G. White, and J. Strony. Quantification of the passive mechanical properties of the resting platelet. Ann. Biomed. Eng. 26:268–277, 1998.
    • (1998) Ann. Biomed. Eng , vol.26 , pp. 268-277
    • Haga, J.H.1    Beaudoin, A.J.2    White, J.G.3    Strony, J.4
  • 28
    • 0026016615 scopus 로고
    • The cytoskeleton of the resting human blood–Platelet—structure of the membrane skeleton and its attachment to actin-filaments
    • Hartwig, J. H., and M. Desisto. The cytoskeleton of the resting human blood–Platelet—structure of the membrane skeleton and its attachment to actin-filaments. J. Cell Biol. 112:407–425, 1991.
    • (1991) J. Cell Biol , vol.112 , pp. 407-425
    • Hartwig, J.H.1    Desisto, M.2
  • 29
    • 33244478266 scopus 로고    scopus 로고
    • Calculation of local pressure tensors in systems with many-body interactions
    • Heinz, H., W. Paul, and K. Binder. Calculation of local pressure tensors in systems with many-body interactions. Phys. Rev. E 72:066704, 2005.
    • (2005) Phys. Rev. E , vol.72 , pp. 066704
    • Heinz, H.1    Paul, W.2    Binder, K.3
  • 30
    • 65349187038 scopus 로고    scopus 로고
    • Microscopic and macroscopic stress with gravitational and rotational forces
    • Hoover, W. G., C. G. Hoover, and J. F. Lutsko. Microscopic and macroscopic stress with gravitational and rotational forces. Phys. Rev. E 79:036709, 2009.
    • (2009) Phys. Rev. E , vol.79 , pp. 036709
    • Hoover, W.G.1    Hoover, C.G.2    Lutsko, J.F.3
  • 31
    • 84877723461 scopus 로고    scopus 로고
    • Makino. 4.45 Pflops astrophysical N-body simulation on K computer: the gravitational trillion-body problem. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Salt Lake City
    • Ishiyama, T., K. Nitadori, and J. Makino. 4.45 Pflops astrophysical N-body simulation on K computer: the gravitational trillion-body problem. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. Salt Lake City, UT: IEEE Computer Society Press; 2012, pp. 1–10.
    • (2012) UT: IEEE Computer Society Press , pp. 1-10
    • Ishiyama, T.1    Nitadori, K.2
  • 33
    • 0038627711 scopus 로고    scopus 로고
    • Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time
    • Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14:143–149, 2003.
    • (2003) Platelets , vol.14 , pp. 143-149
    • Jesty, J.1    Yin, W.2    Perrotta, P.3    Bluestein, D.4
  • 36
    • 7544220267 scopus 로고
    • The computer study of transport processes under extreme conditions
    • Lees, A., and S. Edwards. The computer study of transport processes under extreme conditions. J. Phys. C 5:1921, 1972.
    • (1972) J. Phys. C , vol.5 , pp. 1921
    • Lees, A.1    Edwards, S.2
  • 37
    • 79952897998 scopus 로고    scopus 로고
    • Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
    • Lei, H., D. A. Fedosov, and G. E. Karniadakis. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. J. Comput. Phys. 230:3765–3779, 2011.
    • (2011) J. Comput. Phys , vol.230 , pp. 3765-3779
    • Lei, H.1    Fedosov, D.A.2    Karniadakis, G.E.3
  • 38
    • 6044240649 scopus 로고    scopus 로고
    • Effects of contact-induced membrane stiffening on platelet adhesion
    • Martinez, E. J., Y. Lanir, and S. Einav. Effects of contact-induced membrane stiffening on platelet adhesion. Biomech. Model. Mechanobiol. 2:157–167, 2004.
    • (2004) Biomech. Model. Mechanobiol , vol.2 , pp. 157-167
    • Martinez, E.J.1    Lanir, Y.2    Einav, S.3
  • 39
    • 30044444632 scopus 로고    scopus 로고
    • Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow
    • 113302-1–113302-12
    • Mody, N. A., and M. R. King. Three-dimensional simulations of a platelet-shaped spheroid near a wall in shear flow. Phys. Fluids 17:113302-1–113302-12, 2005.
    • (2005) Phys. Fluids , vol.17
    • Mody, N.A.1    King, M.R.2
  • 40
    • 51649126018 scopus 로고    scopus 로고
    • Platelet adhesive dynamics. Part I: Characterization of platelet hydrodynamic collisions and wall effects
    • Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part I: Characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95:2539–2555, 2008.
    • (2008) Biophys. J , vol.95 , pp. 2539-2555
    • Mody, N.A.1    King, M.R.2
  • 41
    • 51649087473 scopus 로고    scopus 로고
    • Platelet adhesive dynamics. Part II: High shear-induced transient aggregation via GPIbalpha-vWF-GPIbalpha bridging
    • Mody, N. A., and M. R. King. Platelet adhesive dynamics. Part II: High shear-induced transient aggregation via GPIbalpha-vWF-GPIbalpha bridging. Biophys. J. 95:2556–2574, 2008.
    • (2008) Biophys. J , vol.95 , pp. 2556-2574
    • Mody, N.A.1    King, M.R.2
  • 42
    • 21244434752 scopus 로고    scopus 로고
    • Mechanics of transient platelet adhesion to von Willebrand factor under flow
    • Mody, N. A., O. Lomakin, T. A. Doggett, T. G. Diacovo, and M. R. King. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88:1432–1443, 2005.
    • (2005) Biophys. J , vol.88 , pp. 1432-1443
    • Mody, N.A.1    Lomakin, O.2    Doggett, T.A.3    Diacovo, T.G.4    King, M.R.5
  • 43
    • 0034993416 scopus 로고    scopus 로고
    • Investigation of fiber motion near solid boundaries in simple shear flow
    • Moses, K. B., S. G. Advani, and A. Reinhardt. Investigation of fiber motion near solid boundaries in simple shear flow. Rheol. Acta 40:296–306, 2001.
    • (2001) Rheol. Acta , vol.40 , pp. 296-306
    • Moses, K.B.1    Advani, S.G.2    Reinhardt, A.3
  • 44
    • 0025869064 scopus 로고
    • An independent haemostatic mechanism: shear induced platelet aggregation
    • O’Brien, J. R., and G. P. Salmon. An independent haemostatic mechanism: shear induced platelet aggregation. Adv. Exp. Med. Biol. 281:287–296, 1990.
    • (1990) Adv. Exp. Med. Biol , vol.281 , pp. 287-296
    • O’Brien, J.R.1    Salmon, G.P.2
  • 45
    • 79957789725 scopus 로고    scopus 로고
    • Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology
    • Padding, J. T., and W. J. Briels. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. J. Phys. Condens. Matter 23:233101, 2011.
    • (2011) J. Phys. Condens. Matter , vol.23 , pp. 233101
    • Padding, J.T.1    Briels, W.J.2
  • 47
    • 18344396058 scopus 로고    scopus 로고
    • A new method to impose no-slip boundary conditions in dissipative particle dynamics
    • Pivkin, I. V., and G. E. Karniadakis. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 207:114–128, 2005.
    • (2005) J. Comput. Phys , vol.207 , pp. 114-128
    • Pivkin, I.V.1    Karniadakis, G.E.2
  • 48
    • 52149120726 scopus 로고    scopus 로고
    • Accurate coarse-grained modeling of red blood cells
    • Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.
    • (2008) Phys. Rev. Lett , vol.101 , pp. 118105
    • Pivkin, I.V.1    Karniadakis, G.E.2
  • 49
    • 85028148567 scopus 로고    scopus 로고
    • P. Crozier, LAMMPS Molecular Dynamics Simulator:
    • Plimpton, S., A. Thompson, and P. Crozier. LAMMPS Molecular Dynamics Simulator. 2014. http://lammps.sandia.gov/.
    • (2014)
    • Plimpton, S.1    Thompson, A.2
  • 50
    • 33750980952 scopus 로고    scopus 로고
    • Flipping of an adherent blood platelet over a substrate
    • Pozrikidis, C. Flipping of an adherent blood platelet over a substrate. J. Fluid Mech. 568:161–172, 2006.
    • (2006) J. Fluid Mech , vol.568 , pp. 161-172
    • Pozrikidis, C.1
  • 51
    • 0032049327 scopus 로고    scopus 로고
    • Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities
    • Ramanujan, S., and C. Pozrikidis. Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361:117–143, 1998.
    • (1998) J. Fluid Mech , vol.361 , pp. 117-143
    • Ramanujan, S.1    Pozrikidis, C.2
  • 56
    • 84865383775 scopus 로고    scopus 로고
    • On developing coarse-grained models for biomolecular simulation: a review
    • Riniker, S., J. R. Allison, and W. F. van Gunsteren. On developing coarse-grained models for biomolecular simulation: a review. Phys. Chem. Chem. Phys. 14:12423–12430, 2012.
    • (2012) Phys. Chem. Chem. Phys , vol.14 , pp. 12423-12430
    • Riniker, S.1    Allison, J.R.2    van Gunsteren, W.F.3
  • 58
    • 77952011415 scopus 로고    scopus 로고
    • High-shear stress sensitizes platelets to subsequent low-shear conditions
    • Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.
    • (2010) Ann. Biomed. Eng , vol.38 , pp. 1442-1450
    • Sheriff, J.1    Bluestein, D.2    Girdhar, G.3    Jesty, J.4
  • 59
    • 84886731300 scopus 로고    scopus 로고
    • Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices
    • Sheriff, J., J. S. Soares, M. Xenos, J. Jesty, M. J. Slepian, and D. Bluestein. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 41:1279–1296, 2013.
    • (2013) Ann. Biomed. Eng , vol.41 , pp. 1279-1296
    • Sheriff, J.1    Soares, J.S.2    Xenos, M.3    Jesty, J.4    Slepian, M.J.5    Bluestein, D.6
  • 60
    • 84896696972 scopus 로고    scopus 로고
    • Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach
    • Soares, J. S., C. Gao, Y. Alemu, M. Slepian, and D. Bluestein. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Ann. Biomed. Eng. 41:2318–2333, 2013.
    • (2013) Ann. Biomed. Eng , vol.41 , pp. 2318-2333
    • Soares, J.S.1    Gao, C.2    Alemu, Y.3    Slepian, M.4    Bluestein, D.5
  • 61
    • 0346304855 scopus 로고    scopus 로고
    • Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations
    • Soddemann, T., B. Dünweg, and K. Kremer. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys. Rev. E 68:046702, 2003.
    • (2003) Phys. Rev. E , vol.68 , pp. 046702
    • Soddemann, T.1    Dünweg, B.2    Kremer, K.3
  • 62
    • 43049119965 scopus 로고    scopus 로고
    • Continuum interpretation of virial stress in molecular simulations
    • Subramaniyan, A. K., and C. T. Sun. Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45:4340–4346, 2008.
    • (2008) Int. J. Solids Struct , vol.45 , pp. 4340-4346
    • Subramaniyan, A.K.1    Sun, C.T.2
  • 63
    • 82655169435 scopus 로고    scopus 로고
    • Modelling platelet–blood flow interaction using the subcellular element Langevin method
    • Sweet, C. R., S. Chatterjee, Z. Xu, K. Bisordi, E. D. Rosen, and M. Alber. Modelling platelet–blood flow interaction using the subcellular element Langevin method. J. R. Soc. Interface 8:1760–1771, 2011.
    • (2011) J. R. Soc. Interface , vol.8 , pp. 1760-1771
    • Sweet, C.R.1    Chatterjee, S.2    Xu, Z.3    Bisordi, K.4    Rosen, E.D.5    Alber, M.6
  • 64
    • 33748574244 scopus 로고    scopus 로고
    • A family of time-staggered schemes for integrating hybrid DPD models for polymers: algorithms and applications
    • Symeonidis, V., and G. E. Karniadakis. A family of time-staggered schemes for integrating hybrid DPD models for polymers: algorithms and applications. J. Comput. Phys. 218:82–101, 2006.
    • (2006) J. Comput. Phys , vol.218 , pp. 82-101
    • Symeonidis, V.1    Karniadakis, G.E.2
  • 65
    • 70449435706 scopus 로고    scopus 로고
    • General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions
    • Thompson, A. P., S. J. Plimpton, and W. Mattson. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131:154107, 2009.
    • (2009) J. Chem. Phys , vol.131 , pp. 154107
    • Thompson, A.P.1    Plimpton, S.J.2    Mattson, W.3
  • 68
    • 33644939583 scopus 로고    scopus 로고
    • Modelling multi-viscosity systems with dissipative particle dynamics
    • Visser, D. C., H. C. J. Hoefsloot, and P. D. Iedema. Modelling multi-viscosity systems with dissipative particle dynamics. J. Comput. Phys. 214:491–504, 2006.
    • (2006) J. Comput. Phys , vol.214 , pp. 491-504
    • Visser, D.C.1    Hoefsloot, H.C.J.2    Iedema, P.D.3
  • 69
    • 0006006596 scopus 로고    scopus 로고
    • Computational methods for continuum models of platelet aggregation
    • Wang, N. T., and A. L. Fogelson. Computational methods for continuum models of platelet aggregation. J. Comput. Phys. 151:649–675, 1999.
    • (1999) J. Comput. Phys , vol.151 , pp. 649-675
    • Wang, N.T.1    Fogelson, A.L.2
  • 70
    • 0027195840 scopus 로고
    • A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength
    • Ward, M. D., and D. A. Hammer. A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength. Biophys. J. 64:936–959, 1993.
    • (1993) Biophys. J , vol.64 , pp. 936-959
    • Ward, M.D.1    Hammer, D.A.2
  • 71
    • 0034359349 scopus 로고    scopus 로고
    • No-slip boundary condition in dissipative particle dynamics
    • Willemsen, S. M., H. C. J. Hoefsloot, and P. D. Iedema. No-slip boundary condition in dissipative particle dynamics. Int. J. Mod. Phys. C 11:881–890, 2000.
    • (2000) Int. J. Mod. Phys. C , vol.11 , pp. 881-890
    • Willemsen, S.M.1    Hoefsloot, H.C.J.2    Iedema, P.D.3
  • 72
    • 77955560669 scopus 로고    scopus 로고
    • Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs
    • Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.
    • (2010) J. Biomech , vol.43 , pp. 2400-2409
    • Xenos, M.1    Girdhar, G.2    Alemu, Y.3    Jesty, J.4    Slepian, M.5    Einav, S.6    Bluestein, D.7
  • 73
    • 77952011367 scopus 로고    scopus 로고
    • Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions
    • Yamaguchi, T., T. Ishikawa, Y. Imai, N. Matsuki, M. Xenos, Y. F. Deng, and D. Bluestein. Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann. Biomed. Eng. 38:1225–1235, 2010.
    • (2010) Ann. Biomed. Eng , vol.38 , pp. 1225-1235
    • Yamaguchi, T.1    Ishikawa, T.2    Imai, Y.3    Matsuki, N.4    Xenos, M.5    Deng, Y.F.6    Bluestein, D.7
  • 74
    • 4544291071 scopus 로고    scopus 로고
    • Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves
    • Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32:1058–1066, 2004.
    • (2004) Ann. Biomed. Eng , vol.32 , pp. 1058-1066
    • Yin, W.1    Alemu, Y.2    Affeld, K.3    Jesty, J.4    Bluestein, D.5
  • 75
    • 84864553859 scopus 로고    scopus 로고
    • A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase
    • Yun, B. M., J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40:1468–1485, 2012.
    • (2012) Ann. Biomed. Eng , vol.40 , pp. 1468-1485
    • Yun, B.M.1    Wu, J.2    Simon, H.A.3    Arjunon, S.4    Sotiropoulos, F.5    Aidun, C.K.6    Yoganathan, A.P.7
  • 76
    • 85129283765 scopus 로고    scopus 로고
    • Zhang, D. D., D. E. Smith, D. A. Jack, and S. Montgomery-Smith. Numerical evaluation of single fiber motion for short-fiber-reinforced composite materials processing. J. Manuf. Sci. Eng. Trans. ASME. 133:051002–051009, 2011.
    • (2011) ASME , vol.51002-51009 , pp. 133
    • Zhang, D.D.1    Smith, D.E.2    Jack, D.A.3
  • 77
    • 84887008406 scopus 로고    scopus 로고
    • Parameterizing the Morse potential for coarse-grained modeling of blood plasma
    • Zhang, N., P. Zhang, W. Kang, D. Bluestein, and Y. F. Deng. Parameterizing the Morse potential for coarse-grained modeling of blood plasma. J. Comput. Phys. 257:726–736, 2014.
    • (2014) J. Comput. Phys , vol.257 , pp. 726-736
    • Zhang, N.1    Zhang, P.2    Kang, W.3    Bluestein, D.4    Deng, Y.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.