-
2
-
-
77956256748
-
Network quantification despite biased labels
-
ACM
-
L. Tang, H. Gao, H. Liu, Network quantification despite biased labels, in: Proceedings of the Eighth Workshop on Mining and Learning with Graphs, ACM, pp. 147-154.
-
Proceedings of the Eighth Workshop on Mining and Learning with Graphs
, pp. 147-154
-
-
Tang, L.1
Gao, H.2
Liu, H.3
-
3
-
-
70449367440
-
Cost-sensitive and modular land-cover classification based on posterior probability estimates
-
A. Guerrero-Curieses, R. Alaiz-Rodriguez, and J. Cid-Sueiro Cost-sensitive and modular land-cover classification based on posterior probability estimates Int. J. Remote Sens. 30 2009 5877 5899
-
(2009)
Int. J. Remote Sens.
, vol.30
, pp. 5877-5899
-
-
Guerrero-Curieses, A.1
Alaiz-Rodriguez, R.2
Cid-Sueiro, J.3
-
4
-
-
47749100121
-
Classification and quantification based on image analysis for sperm samples with uncertain damaged/intact cell proportions
-
Springer
-
L. Sánchez, V. González-Castro, E. Alegre-Gutiérrez, R. Alaiz-Rodríguez, Classification and quantification based on image analysis for sperm samples with uncertain damaged/intact cell proportions, in: Image Analysis and Recognition, Lecture Notes in Computer Science 5112, Springer, 2008, pp. 827-836.
-
(2008)
Image Analysis and Recognition, Lecture Notes in Computer Science 5112
, pp. 827-836
-
-
Sánchez, L.1
-
6
-
-
33749553313
-
Pragmatic text mining: Minimizing human effort to quantify many issues in call logs
-
G. Forman, E. Kirshenbaum, J. Suermondt, Pragmatic text mining: minimizing human effort to quantify many issues in call logs, in: Proceedings of ACM SIGKDD06, ACM, pp. 852-861.
-
Proceedings of ACM SIGKDD06, ACM
, pp. 852-861
-
-
Forman, G.1
Kirshenbaum, E.2
Suermondt, J.3
-
7
-
-
33745886270
-
Classifier technology and the illusion of progress
-
D. Hand Classifier technology and the illusion of progress Stat. Sci. 21 2006 1 14
-
(2006)
Stat. Sci.
, vol.21
, pp. 1-14
-
-
Hand, D.1
-
8
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost, and T. Fawcett Robust classification for imprecise environments Mach. Learn. 42 2001 203 231
-
(2001)
Mach. Learn.
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
10
-
-
50549093309
-
Quantifying counts and costs via classification
-
G. Forman Quantifying counts and costs via classification Data Min. Knowl. Discov. 17 2008 164 206
-
(2008)
Data Min. Knowl. Discov.
, vol.17
, pp. 164-206
-
-
Forman, G.1
-
12
-
-
0000833531
-
The impact of changing populations on classifier performance
-
M. Kelly, D. Hand, N. Adams, The impact of changing populations on classifier performance, in: Proceedings of ACM SIGKDD99, pp. 367-371.
-
Proceedings of ACM SIGKDD99
, pp. 367-371
-
-
Kelly, M.1
Hand, D.2
Adams, N.3
-
13
-
-
44649189946
-
Assessing the impact of changing environments on classifier performance
-
Springer-Verlag
-
R. Alaiz-Rodríguez, N. Japkowicz, Assessing the impact of changing environments on classifier performance, in: Advances in AI, Lecture Notes in Computer Science 5032, Springer-Verlag, 2008, pp. 13-24.
-
(2008)
Advances in AI, Lecture Notes in Computer Science 5032
, pp. 13-24
-
-
Alaiz-Rodríguez, R.1
-
14
-
-
14844357975
-
A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distributions
-
T. Fawcett, and P. Flach A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distributions Mach. Learn. 58 2005 33 38
-
(2005)
Mach. Learn.
, vol.58
, pp. 33-38
-
-
Fawcett, T.1
Flach, P.2
-
15
-
-
0003877646
-
-
John Wiley & Sons, New York, NY
-
J. Fleiss, B. Levin, and M. Paik Statistical Methods for Rates and Proportions, Wiley Series in Probability and Statistics 2003 John Wiley & Sons, New York, NY
-
(2003)
Statistical Methods for Rates and Proportions, Wiley Series in Probability and Statistics
-
-
Fleiss, J.1
Levin, B.2
Paik, M.3
-
16
-
-
1442275185
-
Learning when training data are costly the effect of class distribution on tree induction
-
G. Weiss, and F. Provost Learning when training data are costly the effect of class distribution on tree induction J. Artif. Intell. Res. 19 2003 315 354
-
(2003)
J. Artif. Intell. Res.
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
17
-
-
14844366200
-
On the application of ROC analysis to predict classification performance under varying class distributions
-
G. Webb, and K. Ting On the application of ROC analysis to predict classification performance under varying class distributions Mach. Learn. 58 2005 25 32
-
(2005)
Mach. Learn.
, vol.58
, pp. 25-32
-
-
Webb, G.1
Ting, K.2
-
18
-
-
33745903917
-
Elaboration on two points raised in "classifier technology and the illusion of progress"
-
R. Holte Elaboration on two points raised in "classifier technology and the illusion of progress" Stat. Sci. 21 2006 24 26
-
(2006)
Stat. Sci.
, vol.21
, pp. 24-26
-
-
Holte, R.1
-
19
-
-
67149129014
-
-
The MIT Press, Cambridge, MA
-
J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence Dataset Shift in Machine Learning 2009 The MIT Press, Cambridge, MA
-
(2009)
Dataset Shift in Machine Learning
-
-
Quionero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
20
-
-
80052714543
-
A unifying view on dataset shift in classification
-
J. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. Chawla, and F. Herrera A unifying view on dataset shift in classification Pattern Recognit. 45 2012 521 530
-
(2012)
Pattern Recognit.
, vol.45
, pp. 521-530
-
-
Moreno-Torres, J.1
Raeder, T.2
Alaiz-Rodríguez, R.3
Chawla, N.4
Herrera, F.5
-
21
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
A. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit. 30 1997 1145 1159
-
(1997)
Pattern Recognit.
, vol.30
, pp. 1145-1159
-
-
Bradley, A.1
-
22
-
-
26944454497
-
ROC graphs notes and practical considerations for researchers
-
T. Fawcett ROC graphs notes and practical considerations for researchers Mach. Learn. 31 2004 1 38
-
(2004)
Mach. Learn.
, vol.31
, pp. 1-38
-
-
Fawcett, T.1
-
23
-
-
33748991193
-
Cost curves an improved method for visualizing classifier performance
-
C. Drummond, and R. Holte Cost curves an improved method for visualizing classifier performance Mach. Learn. 65 2006 95 130
-
(2006)
Mach. Learn.
, vol.65
, pp. 95-130
-
-
Drummond, C.1
Holte, R.2
-
24
-
-
4744367074
-
Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: Evidence from a multi-class problem in remote sensing
-
P. Latinne, M. Saerens, C. Decaestecker, Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: evidence from a multi-class problem in remote sensing, in: Proceedings of ICML01, M. Kaufmann, 2001, pp. 298-305.
-
(2001)
Proceedings of ICML01, M. Kaufmann
, pp. 298-305
-
-
Latinne, P.1
Saerens, M.2
Decaestecker, C.3
-
25
-
-
42749092337
-
Classification on data with biased class distribution
-
Springer-Verlag
-
S. Vucetic, Z. Obradovic, Classification on data with biased class distribution, in: Proceedings of ECML01, Springer-Verlag, pp. 527-538.
-
Proceedings of ECML01
, pp. 527-538
-
-
Vucetic, S.1
Obradovic, Z.2
-
26
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities a simple procedure
-
M. Saerens, P. Latinne, and C. Decaestecker Adjusting the outputs of a classifier to new a priori probabilities a simple procedure Neural Comput. 14 2002 21 41
-
(2002)
Neural Comput.
, vol.14
, pp. 21-41
-
-
Saerens, M.1
Latinne, P.2
Decaestecker, C.3
-
27
-
-
70350681186
-
Quantification and semi-supervised classification methods for handling changes in class distribution
-
J. Xue, G. Weiss, Quantification and semi-supervised classification methods for handling changes in class distribution, in: Proceedings of ACM SIGKDD09, ACM, pp. 897-906.
-
Proceedings of ACM SIGKDD09, ACM
, pp. 897-906
-
-
Xue, J.1
Weiss, G.2
-
28
-
-
80051665683
-
Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift
-
R. Alaiz-Rodríguez, A. Guerrero-Curieses, and J. Cid-Sueiro Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift Neurocomputing 74 2011 2614 2623
-
(2011)
Neurocomputing
, vol.74
, pp. 2614-2623
-
-
Alaiz-Rodríguez, R.1
Guerrero-Curieses, A.2
Cid-Sueiro, J.3
-
30
-
-
84867715887
-
SMOTE-RSB a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
-
E. Ramentol, Y. Caballero, R. Bello, and F. Herrera SMOTE-RSB a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory Knowl. Inf. Syst. 33 2012 245 265
-
(2012)
Knowl. Inf. Syst.
, vol.33
, pp. 245-265
-
-
Ramentol, E.1
Caballero, Y.2
Bello, R.3
Herrera, F.4
-
32
-
-
31844446804
-
A support vector method for multivariate performance measures
-
T. Joachims, A support vector method for multivariate performance measures, in: Proceedings of ICML05, ACM, pp. 377-384.
-
Proceedings of ICML05, ACM
, pp. 377-384
-
-
Joachims, T.1
-
34
-
-
33646391662
-
Counting positives accurately despite inaccurate classification
-
Springer-Verlag
-
G. Forman, Counting positives accurately despite inaccurate classification, in: Proceedings of ECML05, Springer-Verlag, 2005, pp. 564-575.
-
(2005)
Proceedings of ECML05
, pp. 564-575
-
-
Forman, G.1
-
35
-
-
33749582214
-
Quantifying trends accurately despite classifier error and class imbalance
-
G. Forman, Quantifying trends accurately despite classifier error and class imbalance, in: Proceedings of ACM SIGKDD06, ACM, pp. 157-166.
-
Proceedings of ACM SIGKDD06, ACM
, pp. 157-166
-
-
Forman, G.1
-
36
-
-
84955768333
-
Foundations of evaluation
-
C. van Rijsbergen Foundations of evaluation J. Doc. 30 1974 365 373
-
(1974)
J. Doc.
, vol.30
, pp. 365-373
-
-
Van Rijsbergen, C.1
-
38
-
-
84867399462
-
On the study of nearest neighbour algorithms for prevalence estimation in binary problems
-
J. Barranquero, P. González, J. Díez, and J.J. del Coz On the study of nearest neighbour algorithms for prevalence estimation in binary problems Pattern Recognit. 46 2013 472 482
-
(2013)
Pattern Recognit.
, vol.46
, pp. 472-482
-
-
Barranquero, J.1
González, P.2
Díez, J.3
Del Coz, J.J.4
-
40
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|