메뉴 건너뛰기




Volumn 48, Issue 2, 2015, Pages 591-604

Quantification-oriented learning based on reliable classifiers

Author keywords

Class distribution estimation; Multivariate predictions; Performance metrics; Quantification; Reliability

Indexed keywords

PATTERN RECOGNITION; RELIABILITY;

EID: 85027928230     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.07.032     Document Type: Article
Times cited : (55)

References (40)
  • 3
    • 70449367440 scopus 로고    scopus 로고
    • Cost-sensitive and modular land-cover classification based on posterior probability estimates
    • A. Guerrero-Curieses, R. Alaiz-Rodriguez, and J. Cid-Sueiro Cost-sensitive and modular land-cover classification based on posterior probability estimates Int. J. Remote Sens. 30 2009 5877 5899
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 5877-5899
    • Guerrero-Curieses, A.1    Alaiz-Rodriguez, R.2    Cid-Sueiro, J.3
  • 4
    • 47749100121 scopus 로고    scopus 로고
    • Classification and quantification based on image analysis for sperm samples with uncertain damaged/intact cell proportions
    • Springer
    • L. Sánchez, V. González-Castro, E. Alegre-Gutiérrez, R. Alaiz-Rodríguez, Classification and quantification based on image analysis for sperm samples with uncertain damaged/intact cell proportions, in: Image Analysis and Recognition, Lecture Notes in Computer Science 5112, Springer, 2008, pp. 827-836.
    • (2008) Image Analysis and Recognition, Lecture Notes in Computer Science 5112 , pp. 827-836
    • Sánchez, L.1
  • 6
    • 33749553313 scopus 로고    scopus 로고
    • Pragmatic text mining: Minimizing human effort to quantify many issues in call logs
    • G. Forman, E. Kirshenbaum, J. Suermondt, Pragmatic text mining: minimizing human effort to quantify many issues in call logs, in: Proceedings of ACM SIGKDD06, ACM, pp. 852-861.
    • Proceedings of ACM SIGKDD06, ACM , pp. 852-861
    • Forman, G.1    Kirshenbaum, E.2    Suermondt, J.3
  • 7
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • D. Hand Classifier technology and the illusion of progress Stat. Sci. 21 2006 1 14
    • (2006) Stat. Sci. , vol.21 , pp. 1-14
    • Hand, D.1
  • 8
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost, and T. Fawcett Robust classification for imprecise environments Mach. Learn. 42 2001 203 231
    • (2001) Mach. Learn. , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 10
    • 50549093309 scopus 로고    scopus 로고
    • Quantifying counts and costs via classification
    • G. Forman Quantifying counts and costs via classification Data Min. Knowl. Discov. 17 2008 164 206
    • (2008) Data Min. Knowl. Discov. , vol.17 , pp. 164-206
    • Forman, G.1
  • 12
    • 0000833531 scopus 로고    scopus 로고
    • The impact of changing populations on classifier performance
    • M. Kelly, D. Hand, N. Adams, The impact of changing populations on classifier performance, in: Proceedings of ACM SIGKDD99, pp. 367-371.
    • Proceedings of ACM SIGKDD99 , pp. 367-371
    • Kelly, M.1    Hand, D.2    Adams, N.3
  • 13
    • 44649189946 scopus 로고    scopus 로고
    • Assessing the impact of changing environments on classifier performance
    • Springer-Verlag
    • R. Alaiz-Rodríguez, N. Japkowicz, Assessing the impact of changing environments on classifier performance, in: Advances in AI, Lecture Notes in Computer Science 5032, Springer-Verlag, 2008, pp. 13-24.
    • (2008) Advances in AI, Lecture Notes in Computer Science 5032 , pp. 13-24
    • Alaiz-Rodríguez, R.1
  • 14
    • 14844357975 scopus 로고    scopus 로고
    • A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distributions
    • T. Fawcett, and P. Flach A response to Webb and Tings on the application of ROC analysis to predict classification performance under varying class distributions Mach. Learn. 58 2005 33 38
    • (2005) Mach. Learn. , vol.58 , pp. 33-38
    • Fawcett, T.1    Flach, P.2
  • 16
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly the effect of class distribution on tree induction
    • G. Weiss, and F. Provost Learning when training data are costly the effect of class distribution on tree induction J. Artif. Intell. Res. 19 2003 315 354
    • (2003) J. Artif. Intell. Res. , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 17
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distributions
    • G. Webb, and K. Ting On the application of ROC analysis to predict classification performance under varying class distributions Mach. Learn. 58 2005 25 32
    • (2005) Mach. Learn. , vol.58 , pp. 25-32
    • Webb, G.1    Ting, K.2
  • 18
    • 33745903917 scopus 로고    scopus 로고
    • Elaboration on two points raised in "classifier technology and the illusion of progress"
    • R. Holte Elaboration on two points raised in "classifier technology and the illusion of progress" Stat. Sci. 21 2006 24 26
    • (2006) Stat. Sci. , vol.21 , pp. 24-26
    • Holte, R.1
  • 21
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognit. 30 1997 1145 1159
    • (1997) Pattern Recognit. , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 22
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs notes and practical considerations for researchers
    • T. Fawcett ROC graphs notes and practical considerations for researchers Mach. Learn. 31 2004 1 38
    • (2004) Mach. Learn. , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 23
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves an improved method for visualizing classifier performance
    • C. Drummond, and R. Holte Cost curves an improved method for visualizing classifier performance Mach. Learn. 65 2006 95 130
    • (2006) Mach. Learn. , vol.65 , pp. 95-130
    • Drummond, C.1    Holte, R.2
  • 24
    • 4744367074 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: Evidence from a multi-class problem in remote sensing
    • P. Latinne, M. Saerens, C. Decaestecker, Adjusting the outputs of a classifier to new a priori probabilities may significantly improve classification accuracy: evidence from a multi-class problem in remote sensing, in: Proceedings of ICML01, M. Kaufmann, 2001, pp. 298-305.
    • (2001) Proceedings of ICML01, M. Kaufmann , pp. 298-305
    • Latinne, P.1    Saerens, M.2    Decaestecker, C.3
  • 25
    • 42749092337 scopus 로고    scopus 로고
    • Classification on data with biased class distribution
    • Springer-Verlag
    • S. Vucetic, Z. Obradovic, Classification on data with biased class distribution, in: Proceedings of ECML01, Springer-Verlag, pp. 527-538.
    • Proceedings of ECML01 , pp. 527-538
    • Vucetic, S.1    Obradovic, Z.2
  • 26
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities a simple procedure
    • M. Saerens, P. Latinne, and C. Decaestecker Adjusting the outputs of a classifier to new a priori probabilities a simple procedure Neural Comput. 14 2002 21 41
    • (2002) Neural Comput. , vol.14 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 27
    • 70350681186 scopus 로고    scopus 로고
    • Quantification and semi-supervised classification methods for handling changes in class distribution
    • J. Xue, G. Weiss, Quantification and semi-supervised classification methods for handling changes in class distribution, in: Proceedings of ACM SIGKDD09, ACM, pp. 897-906.
    • Proceedings of ACM SIGKDD09, ACM , pp. 897-906
    • Xue, J.1    Weiss, G.2
  • 28
    • 80051665683 scopus 로고    scopus 로고
    • Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift
    • R. Alaiz-Rodríguez, A. Guerrero-Curieses, and J. Cid-Sueiro Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift Neurocomputing 74 2011 2614 2623
    • (2011) Neurocomputing , vol.74 , pp. 2614-2623
    • Alaiz-Rodríguez, R.1    Guerrero-Curieses, A.2    Cid-Sueiro, J.3
  • 30
    • 84867715887 scopus 로고    scopus 로고
    • SMOTE-RSB a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory
    • E. Ramentol, Y. Caballero, R. Bello, and F. Herrera SMOTE-RSB a hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory Knowl. Inf. Syst. 33 2012 245 265
    • (2012) Knowl. Inf. Syst. , vol.33 , pp. 245-265
    • Ramentol, E.1    Caballero, Y.2    Bello, R.3    Herrera, F.4
  • 32
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • T. Joachims, A support vector method for multivariate performance measures, in: Proceedings of ICML05, ACM, pp. 377-384.
    • Proceedings of ICML05, ACM , pp. 377-384
    • Joachims, T.1
  • 34
    • 33646391662 scopus 로고    scopus 로고
    • Counting positives accurately despite inaccurate classification
    • Springer-Verlag
    • G. Forman, Counting positives accurately despite inaccurate classification, in: Proceedings of ECML05, Springer-Verlag, 2005, pp. 564-575.
    • (2005) Proceedings of ECML05 , pp. 564-575
    • Forman, G.1
  • 35
    • 33749582214 scopus 로고    scopus 로고
    • Quantifying trends accurately despite classifier error and class imbalance
    • G. Forman, Quantifying trends accurately despite classifier error and class imbalance, in: Proceedings of ACM SIGKDD06, ACM, pp. 157-166.
    • Proceedings of ACM SIGKDD06, ACM , pp. 157-166
    • Forman, G.1
  • 36
    • 84955768333 scopus 로고
    • Foundations of evaluation
    • C. van Rijsbergen Foundations of evaluation J. Doc. 30 1974 365 373
    • (1974) J. Doc. , vol.30 , pp. 365-373
    • Van Rijsbergen, C.1
  • 38
    • 84867399462 scopus 로고    scopus 로고
    • On the study of nearest neighbour algorithms for prevalence estimation in binary problems
    • J. Barranquero, P. González, J. Díez, and J.J. del Coz On the study of nearest neighbour algorithms for prevalence estimation in binary problems Pattern Recognit. 46 2013 472 482
    • (2013) Pattern Recognit. , vol.46 , pp. 472-482
    • Barranquero, J.1    González, P.2    Díez, J.3    Del Coz, J.J.4
  • 40
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.