메뉴 건너뛰기




Volumn 30, Issue 22, 2009, Pages 5877-5899

Cost-sensitive and modular land-cover classification based on posterior probability estimates

Author keywords

[No Author keywords available]

Indexed keywords

IMPULSE NOISE; LEARNING ALGORITHMS; PROBABILITY; SPECTROSCOPY;

EID: 70449367440     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431160902787695     Document Type: Article
Times cited : (7)

References (69)
  • 1
    • 34748847427 scopus 로고    scopus 로고
    • Multispectral image classification: A supervised neural computation approach based on rough-fuzzy membership function and weak fuzzy similarity relation
    • AGRAWAL, A., KUMAR, N., and RADHAKRISHNA, M., 2007, Multispectral image classification: a supervised neural computation approach based on rough-fuzzy membership function and weak fuzzy similarity relation. International Journal of Remote Sensing, 28, pp. 4597-4608.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 4597-4608
    • Agrawal, A.1    Kumar, N.2    Radhakrishna, M.3
  • 2
    • 0032669466 scopus 로고    scopus 로고
    • Growing mixtures network for classification applications
    • ALBA, J., DOCÍO, L., DOCAMPO, D. and MÁRQUEZ, O., 1999, Growing mixtures network for classification applications. Signal Processing, 76, pp. 43-60.
    • (1999) Signal Processing , vol.76 , pp. 43-60
    • Alba, J.1    Docío, L.2    Docampo, D.3    Márquez, O.4
  • 4
    • 23044459586 scopus 로고    scopus 로고
    • A model selection algorithm for a posteriori probability estimation with neural networks
    • ARRIBAS, J. and CID-SUEIRO, J., 2005, A model selection algorithm for a posteriori probability estimation with neural networks. IEEE Transactions on Neural Networks, 16, pp. 799-809.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 799-809
    • Arribas, J.1    Cid-Sueiro, J.2
  • 6
    • 0033272085 scopus 로고    scopus 로고
    • The effect of misclassification costs on neural network classifiers
    • BERARDI, V. and ZHANG, G., 1999, The effect of misclassification costs on neural network classifiers. Decision Sciences, 30, pp. 659-682.
    • (1999) Decision Sciences , vol.30 , pp. 659-682
    • Berardi, V.1    Zhang, G.2
  • 12
    • 0033881881 scopus 로고    scopus 로고
    • An approach to feature selection and classification of remote sensing images based on the Bayes rule for minimum cost
    • BRUZZONE, L., 2000, An approach to feature selection and classification of remote sensing images based on the Bayes rule for minimum cost. IEEE Transactions on Geoscience and Remote Sensing, 38, pp. 429-438.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , pp. 429-438
    • Bruzzone, L.1
  • 16
    • 0035576073 scopus 로고    scopus 로고
    • Satured perceptrons for maximum margin and minimum misclassification error
    • CID-SUEIRO, J. and SANCHO-GÓMEZ, J., 2001, Satured perceptrons for maximum margin and minimum misclassification error. Neural Processing Letters, 14, pp. 217-226.
    • (2001) Neural Processing Letters , vol.14 , pp. 217-226
    • Cid-Sueiro, J.1    Sancho-Gómez, J.2
  • 17
    • 0026278621 scopus 로고
    • Areview of assessing the accuracy of classifications of remotely sensed data
    • CONGALTON, R.G., 1991,Areview of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, pp. 35-46.
    • (1991) Remote Sensing of Environment , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 18
    • 37549004391 scopus 로고    scopus 로고
    • Multispectral landuse classification using neural networks and support vector machines: One or the other, or both
    • DIXON, D., and CANDADE, N., 2008, Multispectral landuse classification using neural networks and support vector machines: one or the other, or both. International Journal of Remote Sensing, 29, pp. 1185-1206.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1185-1206
    • Dixon, D.1    Candade, N.2
  • 19
    • 0017994571 scopus 로고
    • Learning algorithms for non-parametric solution to be minimum error classification problem
    • DO-TU, H. and INSTALLE, M., 1978, Learning algorithms for non-parametric solution to be minimum error classification problem. IEEE Transactions on Computers, 27, pp. 648-659.
    • (1978) IEEE Transactions on Computers , vol.27 , pp. 648-659
    • Do-Tu, H.1    Installe, M.2
  • 21
    • 0141974913 scopus 로고    scopus 로고
    • Retrieving leaf area index with a neural network method: Simulation and validation
    • FANG, H. and LIANG, S., 2003, Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Transactions on Geoscience and Remote Sensing, 41, pp. 2052-2062.
    • (2003) IEEE Transactions on Geoscience and Remote Sensing , vol.41 , pp. 2052-2062
    • Fang, H.1    Liang, S.2
  • 22
    • 40349100592 scopus 로고    scopus 로고
    • RVM-based multi-class classification of remotely sensed data
    • FOODY, G.M., 2008, RVM-based multi-class classification of remotely sensed data. International Journal of Remote Sensing, 29, pp. 1817-1823.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 1817-1823
    • Foody, G.M.1
  • 23
    • 0028184024 scopus 로고
    • Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership fucntions
    • FOODY, G.M. and COX, D.P., 1994, Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership fucntions. International Journal of Remote Sensing, 15, pp. 619-631.
    • (1994) International Journal of Remote Sensing , vol.15 , pp. 619-631
    • Foody, G.M.1    Cox, D.P.2
  • 26
    • 27844489518 scopus 로고    scopus 로고
    • Loss functions to combine learning and decision in multiclass problems
    • GUERRERO-CURIESES, A., ALAIZ-RODRIGUEZ, R. and CID-SUEIRO, J., 2005, Loss functions to combine learning and decision in multiclass problems. Neurocomputing, 69, pp. 3-17.
    • (2005) Neurocomputing , vol.69 , pp. 3-17
    • Guerrero-Curieses, A.1    Alaiz-Rodriguez, R.2    Cid-Sueiro, J.3
  • 28
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal brain surgeon
    • S.J. Hanson, J.D. Cowan, and C.L. Giles, (Eds.) (SanMateo, CA: Morgan Kaufmann) Available online at
    • HASSIBI, B. and STORK, D., 1993, Second order derivatives for network pruning: Optimal brain surgeon. In Advances in Neural Information Processing Systems, Vol. 5, S.J. Hanson, J.D. Cowan, and C.L. Giles, (Eds.) (SanMateo, CA: Morgan Kaufmann), pp. 164-171. Available online at: http://citeseer.nj.nec.com/hassibi93second.html
    • (1993) Neural Information Processing Systems , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.2
  • 29
    • 0036402329 scopus 로고    scopus 로고
    • Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT)
    • June 2002; GARSS 002, 6, June
    • HONG, S., MOON, W., HONG-YUL, P. and CHOI, G.-H., 2002, Data fusion of multiple polarimetric SAR images using discrete wavelet transform (DWT). IEEE International Geoscience and Remote Sensing Symposium, June 2002; GARSS 002, 6, June, pp. 3323-3325.
    • (2002) IEEE International Geoscience and Remote Sensing Symposium , pp. 3323-3325
    • Hong, S.1    Moon, W.2    Hong-Yul, P.3    Choi, G.-H.4
  • 30
    • 33644499266 scopus 로고    scopus 로고
    • A neural network image interpretation system to extract rural and urban land use and land cover information from remote sensor data
    • JENSEN, J., QIU, F. and PATTERSON, K., 2001, A neural network image interpretation system to extract rural and urban land use and land cover information from remote sensor data. Geocarto International, 16, pp. 1-10.
    • (2001) Geocarto International , vol.16 , pp. 1-10
    • Jensen, J.1    Qiu, F.2    Patterson, K.3
  • 31
    • 0003798642 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • Technical Report, B. Schölkopf, C. Burges and A. Smola (Eds.) (Cambridge, MA: MIT Press)
    • JOACHIMS, T., 1999, Making large-scale SVM learning practical. Advances in kernel methods - support vector learning. Technical Report, B. Schölkopf, C. Burges and A. Smola (Eds.) (Cambridge, MA: MIT Press).
    • (1999) Advances in kernel methods - support vector learning
    • Joachims, T.1
  • 32
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • JUANG, B. and KATAGIRI, S., 1992, Discriminative learning for minimum error classification. IEEE Transactions on Signal Processing, 40, pp. 3043-3054.
    • (1992) IEEE Transactions on Signal Processing , vol.40 , pp. 3043-3054
    • Juang, B.1    Katagiri, S.2
  • 34
    • 0031143351 scopus 로고    scopus 로고
    • Robust classification of multispectral data using multiple neural networks and fuzzy integral
    • KUMAR, A., BASU, S. and MAJUMDAR, K., 1997, Robust classification of multispectral data using multiple neural networks and fuzzy integral. IEEE Transactions on Geoscience and Remote Sensing, 35, pp. 787-790.
    • (1997) IEEE Transactions on Geoscience and Remote Sensing , vol.35 , pp. 787-790
    • Kumar, A.1    Basu, S.2    Majumdar, K.3
  • 36
    • 0035441168 scopus 로고    scopus 로고
    • Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery
    • LI, Z., KHANANIAN, A., FRASER, R. and CIHLAR, J., 2001, Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 1859-1870.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 1859-1870
    • Li, Z.1    Khananian, A.2    Fraser, R.3    Cihlar, J.4
  • 37
    • 34047163965 scopus 로고    scopus 로고
    • Comparative assessment of the measures of thematic classification accuracy
    • LIU, C., FRAZIER, P. and KUMAR, L., 2007, Comparative assessment of the measures of thematic classification accuracy. Remote Sensing of Environment, 107, pp. 606-616.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 606-616
    • Liu, C.1    Frazier, P.2    Kumar, L.3
  • 39
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing images with support vector machines
    • MELGANI, F. and BRUZZONE, L., 2004, Classification of hyperspectral remote-sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42, pp. 1778-1790.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 42
    • 0035440535 scopus 로고    scopus 로고
    • A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data
    • MUCHONEY, D. and WILLIAMSON, J., 2001, A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 1969-1977.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 1969-1977
    • Muchoney, D.1    Williamson, J.2
  • 43
    • 1942504279 scopus 로고    scopus 로고
    • Accuracy of land cover area estimated from coarse spatial resolution images using an unmixing method
    • OTI, K., UENISHI, T.M., OMASA, K. and TAMURA, M., 2004, Accuracy of land cover area estimated from coarse spatial resolution images using an unmixing method. International Journal of Remote Sensing, 25, pp. 1673-1683.
    • (2004) International Journal of Remote Sensing , vol.25 , pp. 1673-1683
    • Oti, K.1    Uenishi, T.M.2    Omasa, K.3    Tamura, M.4
  • 45
    • 0001770345 scopus 로고
    • Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function
    • (San Diego, CA: Morgan Kauffmann)
    • PEARLMUTTER, B. and HAMPSHIRE, J., 1990, Equivalence proofs for multilayer perceptron classifiers and the Bayesian discriminant function. In Proceedings of 1990 Connectionist Models Summer School (San Diego, CA: Morgan Kauffmann), pp. 159-172.
    • (1990) Proceedings of Connectionist Models Summer School , vol.1990 , pp. 159-172
    • Pearlmutter, B.1    Hampshire, J.2
  • 46
    • 0036999148 scopus 로고    scopus 로고
    • Improved classification of SAR images by segmentation and fusion with optical images
    • 15-17 October
    • PELLIZZERI, T., OLIVER, C., LOMBARDO, P. and BUCCIARELLI, T., 2002, Improved classification of SAR images by segmentation and fusion with optical images. In RADAR 2002, 15-17 October 2002, pp. 158-161.
    • (2002) RADAR 2002 , pp. 158-161
    • Pellizzeri, T.1    Oliver, C.2    Lombardo, P.3    Bucciarelli, T.4
  • 47
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • PESARESI,M. and BENESIKTSSON, J., 2001, A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 39, pp. 309-320.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 309-320
    • Pesaresi, M.1    Benesiktsson, J.2
  • 48
    • 0032030026 scopus 로고    scopus 로고
    • Multisensor image fusion in remote sensing: Concepts, methods and applications
    • POHL, C. and GENDEREN, J.V., 1998, Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19, pp. 823-854.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 823-854
    • Pohl, C.1    Genderen, J.V.2
  • 49
    • 2542529216 scopus 로고    scopus 로고
    • Classification capacity of a modular neural network implementing neurally inspired architecture and training rules
    • POIRAZI, P., NEOCLEOUS, C., PATTICHIS, C. and SCHIZAS, C., 2004, Classification capacity of a modular neural network implementing neurally inspired architecture and training rules. IEEE Transactions on Neural Networks, 15, pp. 597-612.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , pp. 597-612
    • Poirazi, P.1    Neocleous, C.2    Pattichis, C.3    Schizas, C.4
  • 51
    • 0032029282 scopus 로고    scopus 로고
    • Evolution and generalization of a single neurone I. Single layer perceptron as seven statistical classifiers
    • RAUDYS, S., 1998, Evolution and generalization of a single neurone I. Single layer perceptron as seven statistical classifiers. Neural Networks, 11, pp. 283-296.
    • (1998) Neural Networks , vol.11 , pp. 283-296
    • Raudys, S.1
  • 52
    • 0032029243 scopus 로고    scopus 로고
    • Evolution and generalization of a single neurone II. Complexity of statistical classifiers and sample size considerations
    • RAUDYS, S., 1998, Evolution and generalization of a single neurone II. Complexity of statistical classifiers and sample size considerations. Neural Networks, 11, pp. 297-313.
    • (1998) Neural Networks , vol.11 , pp. 297-313
    • Raudys, S.1
  • 53
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • RICHARD,M. and LIPPMANN, R., 1991, Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3, pp. 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.1    Lippmann, R.2
  • 55
    • 0025670892 scopus 로고
    • The multilayer perceptron as an approximation to a Bayes optimal discriminant function
    • RUCK, D., ROGERS, S., KABRISKY, M., OXLEY, M. and SUTER, B., 1990, The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Transactions on Neural Networks, 1, pp. 296-298.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , pp. 296-298
    • Ruck, D.1    Rogers, S.2    Kabrisky, M.3    Oxley, M.4    Suter, B.5
  • 56
    • 0030291988 scopus 로고    scopus 로고
    • An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images
    • SERPICO, S., BRUZZONE, L. and ROLI, F., 1996, An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images. Pattern Recognition Letters, 17, pp. 1331-1341.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 1331-1341
    • Serpico, S.1    Bruzzone, L.2    Roli, F.3
  • 57
    • 0033586922 scopus 로고    scopus 로고
    • Quality assesment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach
    • SMITS, P., DELLEPIANE, S. and SCHOWENGERDT, R., 1999, Quality assesment of image classification algorithms for land-cover mapping: A review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20, pp. 1461-1486.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 1461-1486
    • Smits, P.1    Dellepiane, S.2    Schowengerdt, R.3
  • 58
    • 0003826720 scopus 로고    scopus 로고
    • Morphological Image Analysis: Principles and Applications
    • 2nd edn (Berlin: Springer-Verlag)
    • SOILLE, P., 2003, Morphological Image Analysis: Principles and Applications, 2nd edn (Berlin: Springer-Verlag).
    • (2003)
    • Soille, P.1
  • 59
    • 0036762736 scopus 로고    scopus 로고
    • Advances in mathematical morphology applied to geoscience and remote sensing
    • SOILLE, P. and PESARESI, M., 2002, Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 40, pp. 2042-2055.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 2042-2055
    • Soille, P.1    Pesaresi, M.2
  • 61
    • 14644442904 scopus 로고    scopus 로고
    • Virtual sensors: Using data mining techniques to efficiently estimate remote sensing spectra
    • SRIVASTAVA, A., OZA, N. and STROEVE, J., 2005, Virtual sensors: Using data mining techniques to efficiently estimate remote sensing spectra. IEEE Transactions on Geoscience and Remote Sensing, 43, pp. 590-600.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , pp. 590-600
    • Srivastava, A.1    Oza, N.2    Stroeve, J.3
  • 62
    • 0035115098 scopus 로고    scopus 로고
    • Comparison of two different PNN training approaches for satellite cloud data classification
    • TIAN, B. and AZIMI-SADJADI, M., 2001, Comparison of two different PNN training approaches for satellite cloud data classification. IEEE Transactions on Neural Networks, 12, pp. 164-168.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 164-168
    • Tian, B.1
  • 64
    • 0019229251 scopus 로고
    • Spatial postprocessing of spectrally classified landsat data
    • TOMAS, I., 1980, Spatial postprocessing of spectrally classified landsat data. Photogrammetic Engineering and Remote Sensing, 46, pp. 1201-1206.
    • (1980) Photogrammetic Engineering and Remote Sensing , vol.46 , pp. 1201-1206
    • Tomas, I.1
  • 66
    • 0022927181 scopus 로고
    • The enhancement of computer classification by logical smoothing
    • TOWNSHEND, J., 1986, The enhancement of computer classification by logical smoothing. Photogrammetic Engineering and Remote Sensing, 52, pp. 213-221.
    • (1986) Photogrammetic Engineering and Remote Sensing , vol.52 , pp. 213-221
    • Townshend, J.1
  • 68
    • 84950930899 scopus 로고
    • Bayesian estimation and prediction using asymmetric loss functions
    • ZELLNER, A., 1986, Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association, 81, pp. 446-451.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 446-451
    • Zellner, A.1
  • 69
    • 0035923273 scopus 로고    scopus 로고
    • Detection of urban housing development by fusing multisensor satellite data and performing spatial feature post-classification
    • ZHANG, Y., 2001, Detection of urban housing development by fusing multisensor satellite data and performing spatial feature post-classification. International Journal of Remote Sensing, 22, pp. 3339-3355.
    • (2001) International Journal of Remote Sensing , vol.22 , pp. 3339-3355
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.