메뉴 건너뛰기




Volumn 58, Issue 1, 2005, Pages 25-32

On the application of ROC analysis to predict classification performance under varying class distributions

Author keywords

Model evaluation; ROC analysis

Indexed keywords

CLASSIFIERS; ERROR ANALYSIS; FUNCTIONS; LEARNING ALGORITHMS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; ROBUSTNESS (CONTROL SYSTEMS); SET THEORY;

EID: 14844366200     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10994-005-4257-7     Document Type: Article
Times cited : (88)

References (12)
  • 1
    • 0033164667 scopus 로고    scopus 로고
    • Comparing classifiers when the misallocation costs are uncertain
    • Adams, N. M., & Hand, D. J. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32, 1139-1147.
    • (1999) Pattern Recognition , vol.32 , pp. 1139-1147
    • Adams, N.M.1    Hand, D.J.2
  • 2
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • Bartlett, P., Ben-David, S., & Kulkarni, S. (2000). Learning changing concepts by exploiting the structure of change. Machine Learning, 41, 153-174.
    • (2000) Machine Learning , vol.41 , pp. 153-174
    • Bartlett, P.1    Ben-David, S.2    Kulkarni, S.3
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30:7, 1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 6
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:1, 63-90.
    • (1993) Machine Learning , vol.11 , Issue.1 , pp. 63-90
    • Holte, R.C.1
  • 8
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F., & Fawcett, T. (2001). Robust classification for imprecise environments. Machine Learning, 42, 203-231.
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 10
    • 14844356915 scopus 로고
    • Learning decision trees
    • Quinlan, J. R. (1987). Learning decision trees. Machine Learning, 1:1, 1-25.
    • (1987) Machine Learning , vol.1 , Issue.1 , pp. 1-25
    • Quinlan, J.R.1
  • 11
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.