-
1
-
-
33846509724
-
Minimax Regret Classifier for Imprecise Class Distribu-tions
-
Alaiz-Rodriguez, R., Guerrero-Curieses, A. and Cid-Sueiro, J. Minimax Regret Classifier for Imprecise Class Distribu-tions. Journal of Machine Learning Research, 8 (2007), 103-130.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 103-130
-
-
Alaiz-Rodriguez, R.1
Guerrero-Curieses, A.2
Cid-Sueiro, J.3
-
4
-
-
33749252873
-
-
MIT Press, Cambridge, MA
-
Chapelle, O., Scholkopf, B. and Zien, A. Semi-Supervised Learning. MIT Press, Cambridge, MA, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
5
-
-
0346586663
-
SMOTE: Synthetic Minority Over-sampling Technique
-
Chawla, N. V., Bowyer, K. W. and Kegelmeyer, W. P. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16 (2002), 321-357.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Kegelmeyer, W.P.3
-
6
-
-
84867577175
-
-
Elkan, C. The foundations of cost-sensitive learning. In the Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001), 973-978.
-
Elkan, C. The foundations of cost-sensitive learning. In the Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001), 973-978.
-
-
-
-
7
-
-
50549093309
-
Quantifying counts and costs via classification
-
Forman, G. Quantifying counts and costs via classification. Data Mining Knowledge Discovery, 17, 2 (2008), 164-206.
-
(2008)
Data Mining Knowledge Discovery
, vol.17
, Issue.2
, pp. 164-206
-
-
Forman, G.1
-
8
-
-
33646391662
-
Counting Positives Accurately Despite Inaccu-rate Classification
-
Forman, G. Counting Positives Accurately Despite Inaccu-rate Classification. In ECML (2005), 564-575.
-
(2005)
ECML
, pp. 564-575
-
-
Forman, G.1
-
9
-
-
4744367074
-
Adjusting the Outputs of a Classifier to New a Priori Probabilities May Significantly Improve Classification Accuracy: Evidence from a multi-class problem in remote sensing
-
In the
-
Latinne, P., Saerens, M. and Decaestecker, C. Adjusting the Outputs of a Classifier to New a Priori Probabilities May Significantly Improve Classification Accuracy: Evidence from a multi-class problem in remote sensing. In the Pro-ceedings of the 18th International Conference on Machine Learning (2001), 298-305.
-
(2001)
Pro-ceedings of the 18th International Conference on Machine Learning
, pp. 298-305
-
-
Latinne, P.1
Saerens, M.2
Decaestecker, C.3
-
10
-
-
0035283313
-
Robust Classification for Impre-cise Environments
-
Provost, F. and Fawcett, T. Robust Classification for Impre-cise Environments. Machine Learning, 42, 3 (2001), 203-231.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
13
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
Saerens, M., Latinne, P. and Decaestecker, C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computing, 14 (2002), 14-21.
-
(2002)
Neural Computing
, vol.14
, pp. 14-21
-
-
Saerens, M.1
Latinne, P.2
Decaestecker, C.3
-
15
-
-
20844458491
-
Mining with rarity: A unifying framework
-
Weiss, G. M. Mining with rarity: a unifying framework. SIGKDD Explorations Newsletter, 6, 1 (2004), 7-19.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 7-19
-
-
Weiss, G.M.1
-
16
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
Weiss, G. M. and Provost, F. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19 (2003), 315-354.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
18
-
-
42749097891
-
Non-stationary data sequence classifi-cation using online class priors estimation
-
Yang, C. and Zhou, J. Non-stationary data sequence classifi-cation using online class priors estimation. Pattern Recogni-tion, 41, 8 (2008), 2656-2664.
-
(2008)
Pattern Recogni-tion
, vol.41
, Issue.8
, pp. 2656-2664
-
-
Yang, C.1
Zhou, J.2
-
20
-
-
33745456231
-
-
Com-puter Science Department, University of Wisconsin-Madison
-
Zhu, X. Semi-Supervised Learning Literature Survey. Com-puter Science Department, University of Wisconsin-Madison, 2005.
-
(2005)
Semi-Supervised Learning Literature Survey
-
-
Zhu, X.1
|