메뉴 건너뛰기




Volumn , Issue , 2009, Pages 897-905

Quantification and semi-supervised classification methods for handling changes in class distribution

Author keywords

Class distribution; Classification; Concept drift; Quantification; Semi supervised learning

Indexed keywords

CLASS DISTRIBUTION; CLASSIFICATION; CONCEPT DRIFT; QUANTIFICATION; SEMI-SUPERVISED LEARNING;

EID: 70350681186     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557117     Document Type: Conference Paper
Times cited : (40)

References (20)
  • 6
    • 84867577175 scopus 로고    scopus 로고
    • Elkan, C. The foundations of cost-sensitive learning. In the Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001), 973-978.
    • Elkan, C. The foundations of cost-sensitive learning. In the Proceedings of the 17th International Joint Conference on Artificial Intelligence (2001), 973-978.
  • 7
    • 50549093309 scopus 로고    scopus 로고
    • Quantifying counts and costs via classification
    • Forman, G. Quantifying counts and costs via classification. Data Mining Knowledge Discovery, 17, 2 (2008), 164-206.
    • (2008) Data Mining Knowledge Discovery , vol.17 , Issue.2 , pp. 164-206
    • Forman, G.1
  • 8
    • 33646391662 scopus 로고    scopus 로고
    • Counting Positives Accurately Despite Inaccu-rate Classification
    • Forman, G. Counting Positives Accurately Despite Inaccu-rate Classification. In ECML (2005), 564-575.
    • (2005) ECML , pp. 564-575
    • Forman, G.1
  • 9
    • 4744367074 scopus 로고    scopus 로고
    • Adjusting the Outputs of a Classifier to New a Priori Probabilities May Significantly Improve Classification Accuracy: Evidence from a multi-class problem in remote sensing
    • In the
    • Latinne, P., Saerens, M. and Decaestecker, C. Adjusting the Outputs of a Classifier to New a Priori Probabilities May Significantly Improve Classification Accuracy: Evidence from a multi-class problem in remote sensing. In the Pro-ceedings of the 18th International Conference on Machine Learning (2001), 298-305.
    • (2001) Pro-ceedings of the 18th International Conference on Machine Learning , pp. 298-305
    • Latinne, P.1    Saerens, M.2    Decaestecker, C.3
  • 10
    • 0035283313 scopus 로고    scopus 로고
    • Robust Classification for Impre-cise Environments
    • Provost, F. and Fawcett, T. Robust Classification for Impre-cise Environments. Machine Learning, 42, 3 (2001), 203-231.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 13
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • Saerens, M., Latinne, P. and Decaestecker, C. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computing, 14 (2002), 14-21.
    • (2002) Neural Computing , vol.14 , pp. 14-21
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 15
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G. M. Mining with rarity: a unifying framework. SIGKDD Explorations Newsletter, 6, 1 (2004), 7-19.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 16
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G. M. and Provost, F. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 19 (2003), 315-354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 18
    • 42749097891 scopus 로고    scopus 로고
    • Non-stationary data sequence classifi-cation using online class priors estimation
    • Yang, C. and Zhou, J. Non-stationary data sequence classifi-cation using online class priors estimation. Pattern Recogni-tion, 41, 8 (2008), 2656-2664.
    • (2008) Pattern Recogni-tion , vol.41 , Issue.8 , pp. 2656-2664
    • Yang, C.1    Zhou, J.2
  • 20
    • 33745456231 scopus 로고    scopus 로고
    • Com-puter Science Department, University of Wisconsin-Madison
    • Zhu, X. Semi-Supervised Learning Literature Survey. Com-puter Science Department, University of Wisconsin-Madison, 2005.
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.