-
1
-
-
85013576689
-
Theory and applications of agnostic PAC-leaming with small decision trees
-
Morgan Kaufmann, San Francisco
-
AUER, P., HOLTE, R. C. and MAASS, W. (1995). Theory and applications of agnostic PAC-leaming with small decision trees. In Proc. Twelfth International Conference on Machine Learning 21-29. Morgan Kaufmann, San Francisco.
-
(1995)
Proc. Twelfth International Conference on Machine Learning
, pp. 21-29
-
-
Auer, P.1
Holte, R.C.2
Maass, W.3
-
2
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
DOMINGOS, P. and PAZZANI, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
4
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
HOLTE, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 63-90.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.C.1
-
6
-
-
0003612091
-
-
MICHIE, D., SPIEGELHALTER, D. J. and TAYLOR, C. C., eds. Ellis Horwood, New York
-
MICHIE, D., SPIEGELHALTER, D. J. and TAYLOR, C. C., eds. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
-
7
-
-
33745834241
-
-
Dept. Information and Computer Sciences, Univ. California, Irvine
-
NEWMAN, D. J., HETTICH, S., BLAKE, C. L. and MERZ, C. J. (1998). UCI repository of machine learning databases. Dept. Information and Computer Sciences, Univ. California, Irvine. Available at www.ics.uci.edu/~mlearn/ MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
9
-
-
0026119038
-
Symbolic and neural learning algorithms: An experimental comparison
-
SHAVLIK, J., MOONEY, R. J. and TOWELL, G. (1991). Symbolic and neural learning algorithms: An experimental comparison. Machine Learning 6 111-143.
-
(1991)
Machine Learning
, vol.6
, pp. 111-143
-
-
Shavlik, J.1
Mooney, R.J.2
Towell, G.3
-
10
-
-
14844366200
-
On the application of ROC analysis to predict classification performance under varying class distributions
-
WEBB, G. and TING, K. M. (2005). On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 25-32.
-
(2005)
Machine Learning
, vol.58
, pp. 25-32
-
-
Webb, G.1
Ting, K.M.2
|