메뉴 건너뛰기




Volumn 21, Issue 1, 2006, Pages 24-26

Elaboration on two points raised in "classifier technology and the illusion of progress"

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33745903917     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/088342306000000033     Document Type: Review
Times cited : (8)

References (10)
  • 1
    • 85013576689 scopus 로고
    • Theory and applications of agnostic PAC-leaming with small decision trees
    • Morgan Kaufmann, San Francisco
    • AUER, P., HOLTE, R. C. and MAASS, W. (1995). Theory and applications of agnostic PAC-leaming with small decision trees. In Proc. Twelfth International Conference on Machine Learning 21-29. Morgan Kaufmann, San Francisco.
    • (1995) Proc. Twelfth International Conference on Machine Learning , pp. 21-29
    • Auer, P.1    Holte, R.C.2    Maass, W.3
  • 2
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • DOMINGOS, P. and PAZZANI, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 4
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • HOLTE, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.C.1
  • 6
    • 0003612091 scopus 로고
    • MICHIE, D., SPIEGELHALTER, D. J. and TAYLOR, C. C., eds. Ellis Horwood, New York
    • MICHIE, D., SPIEGELHALTER, D. J. and TAYLOR, C. C., eds. (1994). Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York.
    • (1994) Machine Learning, Neural and Statistical Classification
  • 9
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • SHAVLIK, J., MOONEY, R. J. and TOWELL, G. (1991). Symbolic and neural learning algorithms: An experimental comparison. Machine Learning 6 111-143.
    • (1991) Machine Learning , vol.6 , pp. 111-143
    • Shavlik, J.1    Mooney, R.J.2    Towell, G.3
  • 10
    • 14844366200 scopus 로고    scopus 로고
    • On the application of ROC analysis to predict classification performance under varying class distributions
    • WEBB, G. and TING, K. M. (2005). On the application of ROC analysis to predict classification performance under varying class distributions. Machine Learning 58 25-32.
    • (2005) Machine Learning , vol.58 , pp. 25-32
    • Webb, G.1    Ting, K.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.