-
1
-
-
24344484786
-
Frequent substructure-based approaches for classifying chemical compounds
-
Aug.
-
M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, "Frequent substructure-based approaches for classifying chemical compounds," IEEE Trans. Knowl. Data Eng., vol. 17, no. 8, pp. 1036-1050, Aug. 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.8
, pp. 1036-1050
-
-
Deshpande, M.1
Kuramochi, M.2
Wale, N.3
Karypis, G.4
-
2
-
-
0742268827
-
An efficient and scalable algorithm for clustering XML documents by structure
-
Jan.
-
W. Lian, D.-L. Cheung, N. Mamoulis, and S.-M. Yiu, "An efficient and scalable algorithm for clustering XML documents by structure," IEEE Trans. Knowl. Data Eng., vol. 16, no. 1, pp. 82-96, Jan. 2004.
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, Issue.1
, pp. 82-96
-
-
Lian, W.1
Cheung, D.-L.2
Mamoulis, N.3
Yiu, S.-M.4
-
3
-
-
77956304974
-
Mining graph patterns efficiently via randomized summaries
-
Lyon, France
-
C. Chen et al., "Mining graph patterns efficiently via randomized summaries," in Proc. 35th Int. Conf. VLDB, Lyon, France, 2009, pp. 742-753.
-
(2009)
Proc. 35th Int. Conf. VLDB
, pp. 742-753
-
-
Chen, C.1
-
4
-
-
78149341724
-
Image categorization using directed graphs
-
Crete, Greece
-
H. Wang, H. Huang, and C. Ding, "Image categorization using directed graphs," in Proc. 11th ECCV, Crete, Greece, 2010, pp. 762-775.
-
(2010)
Proc. 11th ECCV
, pp. 762-775
-
-
Wang, H.1
Huang, H.2
Ding, C.3
-
5
-
-
33750309516
-
Graph-based text classification: Learn from your neighbors
-
Seattle, WA, USA
-
R. Angelova and G. Weikum, "Graph-based text classification: Learn from your neighbors," in Proc. 29th Annu. Int. ACM SIGIR, Seattle, WA, USA, 2006, pp. 485-492.
-
(2006)
Proc. 29th Annu. Int. ACM SIGIR
, pp. 485-492
-
-
Angelova, R.1
Weikum, G.2
-
6
-
-
34948865790
-
Image classification with segmentation graph kernels
-
Minneapolis, MN, USA
-
Z. Harchaoui and F. Bach, "Image classification with segmentation graph kernels," in Proc. 20th IEEE Conf. CVPR, Minneapolis, MN, USA, 2007, pp. 1-8.
-
(2007)
Proc. 20th IEEE Conf. CVPR
, pp. 1-8
-
-
Harchaoui, Z.1
Bach, F.2
-
7
-
-
78149312583
-
Frequent subgraph discovery
-
M. Kuramochi and G. Karypis, "Frequent subgraph discovery," in Proc. 1st ICDM, 2001, pp. 313-320.
-
(2001)
Proc. 1st ICDM
, pp. 313-320
-
-
Kuramochi, M.1
Karypis, G.2
-
8
-
-
77956220358
-
Near-optimal supervised feature selection among frequent subgraphs
-
M. Thoma et al., "Near-optimal supervised feature selection among frequent subgraphs," in Proc. 9th SDM, 2009, pp. 1075-1086.
-
(2009)
Proc. 9th SDM
, pp. 1075-1086
-
-
Thoma, M.1
-
9
-
-
84881358578
-
Graph stream classification using labeled and unlabeled graphs
-
Brisbane, QLD, USA
-
S. Pan, X. Zhu, C. Zhang, and P. Yu, "Graph stream classification using labeled and unlabeled graphs," in Proc. 29th IEEE ICDE, Brisbane, QLD, USA, 2013, pp. 398-409.
-
(2013)
Proc. 29th IEEE ICDE
, pp. 398-409
-
-
Pan, S.1
Zhu, X.2
Zhang, C.3
Yu, P.4
-
10
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, nos. 1-2, pp. 273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
11
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
T. Dietterich, R. Lathrop, and T. Lozano-Pérez, "Solving the multiple instance problem with axis-parallel rectangles," Artif. Intell., vol. 89, no. 1-2, pp. 31-71, 1997.
-
(1997)
Artif. Intell.
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.1
Lathrop, R.2
Lozano-Pérez, T.3
-
12
-
-
79953031810
-
MILIS: Multiple instance learning with instance selection
-
May
-
Z. Fu, A. Robles-Kelly, and J. Zhou, "MILIS: Multiple instance learning with instance selection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 958-977, May 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.5
, pp. 958-977
-
-
Fu, Z.1
Robles-Kelly, A.2
Zhou, J.3
-
13
-
-
15544389390
-
Multi-instance learning based web mining
-
Z.-H. Zhou, K. Jiang, and M. Li, "Multi-instance learning based web mining," Appl. Intell., vol. 22, no. 2, pp. 135-147, 2005.
-
(2005)
Appl. Intell.
, vol.22
, Issue.2
, pp. 135-147
-
-
Zhou, Z.-H.1
Jiang, K.2
Li, M.3
-
14
-
-
79952898899
-
Weakly supervised training of a sign language recognition system using multiple instance learning density matrices
-
Apr.
-
D. Kelly, J. McDonald, and C. Markham, "Weakly supervised training of a sign language recognition system using multiple instance learning density matrices," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 526-541, Apr. 2011.
-
(2011)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.41
, Issue.2
, pp. 526-541
-
-
Kelly, D.1
McDonald, J.2
Markham, C.3
-
15
-
-
80955134248
-
Multi-instance multi-label learning
-
Z. Zhou, M. Zhang, S. Huang, and Y. Li, "Multi-instance multi-label learning," Artif. Intell., vol. 176, no. 1, pp. 2291-2320, 2012.
-
(2012)
Artif. Intell.
, vol.176
, Issue.1
, pp. 2291-2320
-
-
Zhou, Z.1
Zhang, M.2
Huang, S.3
Li, Y.4
-
16
-
-
0141596676
-
Solving the multiple-instance problem: A lazy learning approach
-
San Francisco, CA, USA
-
J. Wang, "Solving the multiple-instance problem: A lazy learning approach," in Proc. 17th ICML, San Francisco, CA, USA, 2000, pp. 1119-1125.
-
(2000)
Proc. 17th ICML
, pp. 1119-1125
-
-
Wang, J.1
-
17
-
-
31844431728
-
Multi-instance tree learning
-
Bonn, Germany
-
H. Blockeel and A. Srinivasan, "Multi-instance tree learning," in Proc. 22th ICML, Bonn, Germany, 2005, pp. 57-64.
-
(2005)
Proc. 22th ICML
, pp. 57-64
-
-
Blockeel, H.1
Srinivasan, A.2
-
18
-
-
83755194948
-
Beyond trees: Adopting MITI to learn rules and ensemble classifiers for multi-instance data
-
Berlin, Heidelberg
-
L. Bjerring and E. Frank, "Beyond trees: Adopting MITI to learn rules and ensemble classifiers for multi-instance data," in Proc. 24th Int. Conf. Adv. AI, Berlin, Heidelberg, 2011, pp. 41-50.
-
(2011)
Proc. 24th Int. Conf. Adv. AI
, pp. 41-50
-
-
Bjerring, L.1
Frank, E.2
-
19
-
-
84948152022
-
A framework for learning rules from multiple instance data
-
Freiburg, Germany
-
Y. Chevaleyre and J. Zucker, "A framework for learning rules from multiple instance data," in Proc. 12th ECML, Freiburg, Germany, 2001, pp. 49-60.
-
(2001)
Proc. 12th ECML
, pp. 49-60
-
-
Chevaleyre, Y.1
Zucker, J.2
-
20
-
-
1642357513
-
Improve multi-instance neural networks through feature selection
-
M. Zhang and Z. Zhou, "Improve multi-instance neural networks through feature selection," Neural Process. Lett., vol. 19, no. 1, pp. 1-10, 2004.
-
(2004)
Neural Process. Lett.
, vol.19
, Issue.1
, pp. 1-10
-
-
Zhang, M.1
Zhou, Z.2
-
21
-
-
33750284913
-
Incorporating multiple SVMs for automatic image annotation
-
X. Qi and Y. Han, "Incorporating multiple SVMs for automatic image annotation," Pattern Recogn., vol. 40, no. 2, pp. 728-741, 2007.
-
(2007)
Pattern Recogn.
, vol.40
, Issue.2
, pp. 728-741
-
-
Qi, X.1
Han, Y.2
-
22
-
-
31844448950
-
Supervised versus multiple instance learning: An empirical comparison
-
New York, NY, USA
-
S. Ray and M. Craven, "Supervised versus multiple instance learning: An empirical comparison," in Proc. 22nd ICML, New York, NY, USA, 2005, pp. 697-704.
-
(2005)
Proc. 22nd ICML
, pp. 697-704
-
-
Ray, S.1
Craven, M.2
-
23
-
-
84887963348
-
Hierarchical sampling for multi-instance ensemble learning
-
Dec.
-
H. Yuan, M. Fang, and X. Zhu, "Hierarchical sampling for multi-instance ensemble learning," IEEE Trans. Knowl. Data Eng., vol. 25, no. 12, pp. 2900-2905, Dec. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.12
, pp. 2900-2905
-
-
Yuan, H.1
Fang, M.2
Zhu, X.3
-
24
-
-
7444219637
-
Logistic regression and boosting for labeled bags of instances
-
X. Xu and E. Frank, "Logistic regression and boosting for labeled bags of instances," in Proc. 8th PAKDD, 2004, pp. 272-281.
-
(2004)
Proc. 8th PAKDD
, pp. 272-281
-
-
Xu, X.1
Frank, E.2
-
25
-
-
84859456417
-
A primal-dual convergence analysis of boosting
-
M. Telgarsky, "A primal-dual convergence analysis of boosting," J. Mach. Learn. Res., vol. 13, no. 1, pp. 561-606, 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 561-606
-
-
Telgarsky, M.1
-
26
-
-
84898935332
-
A framework for multiple-instance learning
-
Cambridge, MA, USA
-
O. Maron and T. Lozano-Pérez, "A framework for multiple-instance learning," in Proc. 12th Annu. Conf. NIPS, Cambridge, MA, USA, 1998, pp. 570-576.
-
(1998)
Proc. 12th Annu. Conf. NIPS
, pp. 570-576
-
-
Maron, O.1
Lozano-Pérez, T.2
-
27
-
-
84898999828
-
EM-DD: An improved multiple-instance learning technique
-
Q. Zhang and S. Goldman, "EM-DD: An improved multiple-instance learning technique," in Proc. 15th Annu. Conf. NIPS, 2001, pp. 1073-1080.
-
(2001)
Proc. 15th Annu. Conf. NIPS
, pp. 1073-1080
-
-
Zhang, Q.1
Goldman, S.2
-
28
-
-
22944460788
-
A boosting approach to multiple instance learning
-
Pisa, Italy
-
P. Auer and R. Ortner, "A boosting approach to multiple instance learning," in Proc. 15th ECML, Pisa, Italy, 2004, pp. 63-74.
-
(2004)
Proc. 15th ECML
, pp. 63-74
-
-
Auer, P.1
Ortner, R.2
-
29
-
-
84894683682
-
Multi-instance multi-graph dual embedding learning
-
Dallas, TX, USA
-
J. Wu, X. Zhu, C. Zhang, and Z. Cai, "Multi-instance multi-graph dual embedding learning," in Proc. 13th ICDM, Dallas, TX, USA, 2013, pp. 827-836.
-
(2013)
Proc. 13th ICDM
, pp. 827-836
-
-
Wu, J.1
Zhu, X.2
Zhang, C.3
Cai, Z.4
-
30
-
-
77951950367
-
Graph kernels
-
Apr.
-
S. V. N. Vishwanathan, K. M. Borgwardt, R. I. Kondor, and N. N. Schraudolph, "Graph kernels," J. Mach. Learn. Res., vol. 11, pp. 1201-1242, Apr. 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.11
, pp. 1201-1242
-
-
Vishwanathan, S.V.N.1
Borgwardt, K.M.2
Kondor, R.I.3
Schraudolph, N.N.4
-
31
-
-
14344252908
-
Extensions of marginalized graph kernels
-
New York, NY, USA
-
P. Mahe, N. Ueda, T. Akutsu, J. Pettet, and J. Vert, "Extensions of marginalized graph kernels," in Proc. 21st ICML, New York, NY, USA, 2004, pp. 552-559.
-
(2004)
Proc. 21st ICML
, pp. 552-559
-
-
Mahe, P.1
Ueda, N.2
Akutsu, T.3
Pettet, J.4
Vert, J.5
-
32
-
-
70349621824
-
Graph classification by means of Lipschitz embedding
-
Dec.
-
K. Riesen and H. Bunke, "Graph classification by means of Lipschitz embedding," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 6, pp. 1472-1483, Dec. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.39
, Issue.6
, pp. 1472-1483
-
-
Riesen, K.1
Bunke, H.2
-
34
-
-
78149333073
-
GSpan: Graph-based substructure pattern mining
-
Washington, DC, USA
-
X. Yan and J. Han, "gSpan: Graph-based substructure pattern mining," in Proc. 2nd ICDM, Washington, DC, USA, 2002, pp. 721-724.
-
(2002)
Proc. 2nd ICDM
, pp. 721-724
-
-
Yan, X.1
Han, J.2
-
35
-
-
84974733299
-
An apriori-based algorithm for mining frequent substructures from graph data
-
Lyon, France
-
A. Inokuchi, T. Washio, and H. Motoda, "An apriori-based algorithm for mining frequent substructures from graph data," in Proc. 4th Eur. Conf. PKDD, Lyon, France, 2000, pp. 13-23.
-
(2000)
Proc. 4th Eur. Conf. PKDD
, pp. 13-23
-
-
Inokuchi, A.1
Washio, T.2
Motoda, H.3
-
36
-
-
2442483205
-
Mining molecular fragments: Finding relevant substructures of molecules
-
C. Borgelt and M. Berthold, "Mining molecular fragments: Finding relevant substructures of molecules," in Proc. 2nd ICDM, 2002, pp. 51-58.
-
(2002)
Proc. 2nd ICDM
, pp. 51-58
-
-
Borgelt, C.1
Berthold, M.2
-
37
-
-
12244294066
-
A quickstart in frequent structure mining can make a difference
-
Seattle, WA, USA
-
S. Nijssen and J. Kok, "A quickstart in frequent structure mining can make a difference," in Proc. 10th ACM SIGKDD, Seattle, WA, USA, 2004, pp. 647-652.
-
(2004)
Proc. 10th ACM SIGKDD
, pp. 647-652
-
-
Nijssen, S.1
Kok, J.2
-
38
-
-
57149124218
-
Mining significant graph patterns by leap search
-
Vancouver, BC, Canada
-
X. Yan, H. Cheng, J. Han, and P. S. Yu, "Mining significant graph patterns by leap search," in Proc. 27th ACM SIGMOD, Vancouver, BC, Canada, 2008, pp. 433-444.
-
(2008)
Proc. 27th ACM SIGMOD
, pp. 433-444
-
-
Yan, X.1
Cheng, H.2
Han, J.3
Yu, P.S.4
-
39
-
-
65449142148
-
Partial least squares regression for graph mining
-
Las Vegas, NV, USA
-
H. Saigo, N. Krämer, and K. Tsuda, "Partial least squares regression for graph mining," in Proc. 14th ACM SIGKDD, Las Vegas, NV, USA, 2008, pp. 578-586.
-
(2008)
Proc. 14th ACM SIGKDD
, pp. 578-586
-
-
Saigo, H.1
Krämer, N.2
Tsuda, K.3
-
40
-
-
77954691039
-
GAIA: Graph classification using evolutionary computation
-
Indianapolis, IN, USA
-
N. Jin, C. Young, and W. Wang, "GAIA: Graph classification using evolutionary computation," in Proc. 29th ACM SIGMOD, Indianapolis, IN, USA, 2010, pp. 879-890.
-
(2010)
Proc. 29th ACM SIGMOD
, pp. 879-890
-
-
Jin, N.1
Young, C.2
Wang, W.3
-
41
-
-
84898968571
-
An application of boosting to graph classification
-
T. Kudo, E. Maeda, and Y. Matsumoto, "An application of boosting to graph classification," in Proc. 18th Annu. Conf. NIPS, 2004, pp. 729-736.
-
(2004)
Proc. 18th Annu. Conf. NIPS
, pp. 729-736
-
-
Kudo, T.1
Maeda, E.2
Matsumoto, Y.3
-
42
-
-
34948862823
-
Weighted substructure mining for image analysis
-
Minneapolis, MN, USA
-
S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir, "Weighted substructure mining for image analysis," in Proc. 20th IEEE Conf. CVPR, Minneapolis, MN, USA, 2007, pp. 1-8.
-
(2007)
Proc. 20th IEEE Conf. CVPR
, pp. 1-8
-
-
Nowozin, S.1
Tsuda, K.2
Uno, T.3
Kudo, T.4
Bakir, G.5
-
43
-
-
60949105177
-
GBoost: A mathematical programming approach to graph classification and regression
-
H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda, "gBoost: A mathematical programming approach to graph classification and regression," Mach. Learn., vol. 75, no. 1, pp. 69-89, 2009.
-
(2009)
Mach. Learn.
, vol.75
, Issue.1
, pp. 69-89
-
-
Saigo, H.1
Nowozin, S.2
Kadowaki, T.3
Kudo, T.4
Tsuda, K.5
-
44
-
-
84896063101
-
Graph classification with imbalanced class distributions and noise
-
S. Pan and X. Zhu, "Graph classification with imbalanced class distributions and noise," in Proc. 23rd IJCAI, 2013, pp. 1586-1592.
-
(2013)
Proc. 23rd IJCAI
, pp. 1586-1592
-
-
Pan, S.1
Zhu, X.2
-
45
-
-
77956212133
-
Boosting with structure information in the functional space: An application to graph classification
-
Washington, DC, USA
-
H. Fei and J. Huan, "Boosting with structure information in the functional space: An application to graph classification," in Proc. 16th ACM SIGKDD, Washington, DC, USA, 2010, pp. 643-652.
-
(2010)
Proc. 16th ACM SIGKDD
, pp. 643-652
-
-
Fei, H.1
Huan, J.2
-
46
-
-
78149471648
-
Multi-class graph boosting with subgraph sharing for object recognition
-
Istanbul, Turkey
-
B. Zhang et al., "Multi-class graph boosting with subgraph sharing for object recognition," in Proc. 20th ICPR, Istanbul, Turkey, 2010, pp. 1541-1544.
-
(2010)
Proc. 20th ICPR
, pp. 1541-1544
-
-
Zhang, B.1
-
47
-
-
84868267952
-
Sparse principal component analysis with constraints
-
M. Grbovic, C. Dance, and S. Vucetic, "Sparse principal component analysis with constraints," in Proc. 26th Conf. AAAI, 2012, pp. 935-941.
-
(2012)
Proc. 26th Conf. AAAI
, pp. 935-941
-
-
Grbovic, M.1
Dance, C.2
Vucetic, S.3
-
48
-
-
34547972773
-
Boosting for transfer learning
-
Corvallis, OR, USA
-
W. Dai, Q. Yang, G. Xue, and Y. Yu, "Boosting for transfer learning," in Proc. 24th ICML, Corvallis, OR, USA, 2007, pp. 193-200.
-
(2007)
Proc. 24th ICML
, pp. 193-200
-
-
Dai, W.1
Yang, Q.2
Xue, G.3
Yu, Y.4
-
49
-
-
65449166085
-
ArnetMiner: Extraction and mining of academic social networks
-
Las Vegas, NV, USA
-
J. Tang et al., "ArnetMiner: Extraction and mining of academic social networks," in Proc. 14th ACM SIGKDD, Las Vegas, NV, USA, 2008, pp. 990-998.
-
(2008)
Proc. 14th ACM SIGKDD
, pp. 990-998
-
-
Tang, J.1
-
50
-
-
33750616759
-
Using fuzzy cognitive maps for knowledge management in a conflict environment
-
Nov.
-
K. Perusich and M. McNeese, "Using fuzzy cognitive maps for knowledge management in a conflict environment," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 36, no. 6, pp. 810-821, Nov. 2006.
-
(2006)
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.
, vol.36
, Issue.6
, pp. 810-821
-
-
Perusich, K.1
McNeese, M.2
-
51
-
-
53349153768
-
Discovery of textual knowledge flow based on the management of knowledge maps
-
X. L. Q. Hu, W. Xu, and Z. Yu, "Discovery of textual knowledge flow based on the management of knowledge maps," Concurr. Comput. Pract. Exp., vol. 20, no. 15, pp. 1791-1806, 2008.
-
(2008)
Concurr. Comput. Pract. Exp.
, vol.20
, Issue.15
, pp. 1791-1806
-
-
Hu, X.L.Q.1
Xu, W.2
Yu, Z.3
-
52
-
-
79960112691
-
Building association link network for semantic link on web resources
-
Jul.
-
X. Luo, Z. Xu, J. Yu, and X. Chen, "Building association link network for semantic link on web resources," IEEE Trans. Autom. Sci. Eng., vol. 8, no. 3, pp. 482-494, Jul. 2011.
-
(2011)
IEEE Trans. Autom. Sci. Eng.
, vol.8
, Issue.3
, pp. 482-494
-
-
Luo, X.1
Xu, Z.2
Yu, J.3
Chen, X.4
-
53
-
-
84936938071
-
Multi-graph learning with positive and unlabeled bags
-
J. Wu et al., "Multi-graph learning with positive and unlabeled bags," in Proc. 14th SIAM Int. Conf. Data Mining, 2014, pp. 217-225.
-
(2014)
Proc. 14th SIAM Int. Conf. Data Mining
, pp. 217-225
-
-
Wu, J.1
-
54
-
-
85028138882
-
Bag constrained structure pattern mining for multi-graph classification
-
to be published
-
J. Wu, X. Zhu, C. Zhang, and P. Yu, "Bag constrained structure pattern mining for multi-graph classification," IEEE Trans. Knowl. Data Eng., to be published.
-
IEEE Trans. Knowl. Data Eng
-
-
Wu, J.1
Zhu, X.2
Zhang, C.3
Yu, P.4
-
55
-
-
4444252785
-
Multi-instance kernels
-
T. Gartner, P. A. Flach, A. Kowalczyk, and A. J. Smola, "Multi-instance kernels," in Proc. 19th ICML, 2002, pp. 179-186.
-
(2002)
Proc. 19th ICML
, pp. 179-186
-
-
Gartner, T.1
Flach, P.A.2
Kowalczyk, A.3
Smola, A.J.4
-
57
-
-
0036161257
-
Linear programming boosting via column generation
-
A. Demiriz, K. P. Bennett, and J. Shawe-Taylor, "Linear programming boosting via column generation," Mach. Learn., vol. 46, no. 1-3, pp. 225-254, 2002.
-
(2002)
Mach. Learn.
, vol.46
, Issue.1-3
, pp. 225-254
-
-
Demiriz, A.1
Bennett, K.P.2
Shawe-Taylor, J.3
|