-
1
-
-
84898946229
-
Support vector machines for multiple-instance learning
-
MIT Press
-
Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: NIPS, pp. 561-568. MIT Press (2003)
-
(2003)
NIPS
, pp. 561-568
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
2
-
-
31844431728
-
Multi-instance tree learning
-
ACM
-
Blockeel, H., Page, D., Srinivasan, A.: Multi-instance tree learning. In: ICML, pp. 57-64. ACM (2005)
-
(2005)
ICML
, pp. 57-64
-
-
Blockeel, H.1
Page, D.2
Srinivasan, A.3
-
3
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. ML 45(1), 5-32 (2001)
-
(2001)
ML
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
33947180489
-
MILES: Multiple-instance learning via embedded instance selection
-
Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance selection. IEEE PAMI 28(12), 1931-1947 (2006)
-
(2006)
IEEE PAMI
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
5
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. AI 89(1-2), 31-71 (1997)
-
(1997)
AI
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. ML 40(2), 139-157 (2000)
-
(2000)
ML
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
7
-
-
58349116527
-
Revisiting multiple-instance learning via embedded instance selection
-
Springer, Berlin
-
Foulds, J., Frank, E.: Revisiting multiple-instance learning via embedded instance selection. In: AUS-AI, pp. 300-310. Springer, Berlin (2008)
-
(2008)
AUS-AI
, pp. 300-310
-
-
Foulds, J.1
Frank, E.2
-
8
-
-
78650168566
-
Speeding Up and Boosting Diverse Density Learning
-
Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. Springer, Heidelberg
-
Foulds, J.R., Frank, E.: Speeding Up and Boosting Diverse Density Learning. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 102-116. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6332
, pp. 102-116
-
-
Foulds, J.R.1
Frank, E.2
-
9
-
-
0002129041
-
Generating accurate rule sets without global optimization
-
Morgan Kaufmann
-
Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: ICML, pp. 144-151. Morgan Kaufmann (1998)
-
(1998)
ICML
, pp. 144-151
-
-
Frank, E.1
Witten, I.H.2
-
10
-
-
76749092270
-
The WEKA data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10-18 (2009)
-
(2009)
SIGKDD Explor.
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
11
-
-
78149323480
-
MIForests: Multiple-Instance Learning with Randomized Trees
-
Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. Springer, Heidelberg
-
Leistner, C., Saffari, A., Bischof, H.: MIForests: Multiple-Instance Learning with Randomized Trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 29-42. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6316
, pp. 29-42
-
-
Leistner, C.1
Saffari, A.2
Bischof, H.3
-
12
-
-
84898935332
-
A framework for multiple-instance learning
-
MIT Press
-
Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: NIPS, pp. 570-576. MIT Press (1998)
-
(1998)
NIPS
, pp. 570-576
-
-
Maron, O.1
Lozano-Pérez, T.2
-
13
-
-
0002288190
-
Multiple-instance learning for natural scene classification
-
Morgan Kaufmann
-
Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: ICML, pp. 341-349. Morgan Kaufmann (1998)
-
(1998)
ICML
, pp. 341-349
-
-
Maron, O.1
Ratan, A.L.2
-
14
-
-
83755209562
-
Effective classifiers for detecting objects
-
Mayo, M.: Effective classifiers for detecting objects. In: CIRAS (2007)
-
(2007)
CIRAS
-
-
Mayo, M.1
-
15
-
-
2442612280
-
-
Tech. rep., Oxford University
-
Michie, D., Muggleton, S., Page, D., Srinivasan, A.: To the international computing community: A new East-West challenge. Tech. rep., Oxford University (1994)
-
(1994)
To the International Computing Community: A New East-West Challenge
-
-
Michie, D.1
Muggleton, S.2
Page, D.3
Srinivasan, A.4
-
16
-
-
0042847140
-
Inference for the Generalization Error
-
Nadeau, C., Bengio, Y.: Inference for the Generalization Error. ML 52(3), 239-281 (2003)
-
(2003)
ML
, vol.52
, Issue.3
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
17
-
-
31544472083
-
Generic object recognition with boosting
-
Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting. IEEE PAMI 28(3), 416-431 (2006)
-
(2006)
IEEE PAMI
, vol.28
, Issue.3
, pp. 416-431
-
-
Opelt, A.1
Pinz, A.2
Fussenegger, M.3
Auer, P.4
-
19
-
-
0342280994
-
Mutagenesis: ILP experiments in a non-determinate biological domain
-
GMD
-
Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: ILP, pp. 217-232. GMD (1994)
-
(1994)
ILP
, pp. 217-232
-
-
Srinivasan, A.1
Muggleton, S.2
King, R.3
Sternberg, M.4
-
20
-
-
14344259407
-
-
Tech. rep., Department of Comp. Sci., University of Nebraska-Lincoln
-
Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D., Gladyshev, V.: A study in modeling low-conservation protein superfamilies. Tech. rep., Department of Comp. Sci., University of Nebraska-Lincoln (2004)
-
(2004)
A Study in Modeling Low-conservation Protein Superfamilies
-
-
Wang, C.1
Scott, S.2
Zhang, J.3
Tao, Q.4
Fomenko, D.5
Gladyshev, V.6
-
21
-
-
84949443498
-
Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem
-
Zucker, J., Chevaleyre, Y.: Solving multiple-instance and multiple-part learning problems with decision trees and decision rules. Application to the mutagenesis problem. In: Proc. Conf. of the Canadian Society for Computational Studies of Intelligence, pp. 204-214 (2001)
-
(2001)
Proc. Conf. of the Canadian Society for Computational Studies of Intelligence
, pp. 204-214
-
-
Zucker, J.1
Chevaleyre, Y.2
|