메뉴 건너뛰기




Volumn , Issue , 2010, Pages 643-651

Boosting with structure information in the functional space: An application to graph classification

Author keywords

Boosting; Feature selection; Graph classification; L1 regularization; Semi structured data

Indexed keywords

BOOSTING; FEATURE SELECTION; GRAPH CLASSIFICATION; L1 REGULARIZATION; SEMI STRUCTURED DATA;

EID: 77956212133     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835886     Document Type: Conference Paper
Times cited : (30)

References (45)
  • 7
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:256-285, 1995.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 77956208652 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • page to be appeared
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. The Annals of Applied Statistics, page to be appeared, 2009.
    • (2009) The Annals of Applied Statistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • January
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002 January.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 30344471433 scopus 로고    scopus 로고
    • An application of boosting to graph classification
    • T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classification. In NIPS, 2004.
    • (2004) NIPS
    • Kudo, T.1    Maeda, E.2    Matsumoto, Y.3
  • 21
    • 0036358995 scopus 로고    scopus 로고
    • The spectrum kernel: A string kernel for svm protein classification
    • C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for svm protein classification. In Pac Symp Biocomput, pages 564-75, 2002.
    • (2002) Pac Symp Biocomput , pp. 564-575
    • Leslie, C.1    Eskin, E.2    Noble, W.3
  • 22
    • 42649140560 scopus 로고    scopus 로고
    • Newwork-constrained regularization and variable selection for analysis of genomic data
    • C. Li and H. Li. Newwork-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24(9):1175-1182, 2008.
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 27
    • 0028961335 scopus 로고
    • SCOP: A structural classification of proteins database for the investigation of sequences and structures
    • A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247:536-40, 1995.
    • (1995) Journal of Molecular Biology , vol.247 , pp. 536-540
    • Murzin, A.1    Brenner, S.2    Hubbard, T.3    Chothia, C.4
  • 31
    • 65449142148 scopus 로고    scopus 로고
    • Partial least squares regression for graph mining
    • H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining. In Proc. SIGKDD08, 2008.
    • (2008) Proc. SIGKDD08
    • Saigo, H.1    Krämer, N.2    Tsuda, K.3
  • 32
    • 60949105177 scopus 로고    scopus 로고
    • Gboost: A mathematical programming approach to graph classification and regression
    • H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost: a mathematical programming approach to graph classification and regression. Journal of Machine Learning, 75(1):69-89, 2009.
    • (2009) Journal of Machine Learning , vol.75 , Issue.1 , pp. 69-89
    • Saigo, H.1    Nowozin, S.2    Kadowaki, T.3    Kudo, T.4    Tsuda, K.5
  • 33
    • 84858769402 scopus 로고    scopus 로고
    • Regularized learning with networks of features
    • T. Sandler, P. P. Talukdar, and L. H. Ungar. Regularized learning with networks of features. In NIPS08, 2008.
    • (2008) NIPS08
    • Sandler, T.1    Talukdar, P.P.2    Ungar, L.H.3
  • 34
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 35
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.1    Singer, Y.2
  • 38
    • 77956203852 scopus 로고    scopus 로고
    • Entire regularization paths for graph data
    • K. Tsuda. Entire regularization paths for graph data. In ICML07, 2007.
    • (2007) ICML07
    • Tsuda, K.1
  • 41
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B, 68:49-67, 2006.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 42
    • 34447335946 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • P. Zhao and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 2006.
    • (2006) Annals of Statistics
    • Zhao, P.1    Yu, B.2
  • 44
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67:301-320, 2005.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 45
    • 43049089414 scopus 로고    scopus 로고
    • F∞ norm support vector machine
    • H. Zou and M. Yuan. F∞ norm support vector machine. Statistica Sinica, 18:379-398, 2008.
    • (2008) Statistica Sinica , vol.18 , pp. 379-398
    • Zou, H.1    Yuan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.