-
7
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121:256-285, 1995.
-
(1995)
Information and Computation
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
9
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337-407, 2000.
-
(2000)
Annals of Statistics
, vol.28
, Issue.2
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
77956208652
-
Regularization paths for generalized linear models via coordinate descent
-
page to be appeared
-
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. The Annals of Applied Statistics, page to be appeared, 2009.
-
(2009)
The Annals of Applied Statistics
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
January
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002 January.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
12
-
-
56449090322
-
Boosting with incomplete information
-
G. Haffari, Y. Wang, S. Wang, G. Mori, and F. Jiao. Boosting with incomplete information. In International Conference on Machine Learning, 2008.
-
(2008)
International Conference on Machine Learning
-
-
Haffari, G.1
Wang, Y.2
Wang, S.3
Mori, G.4
Jiao, F.5
-
19
-
-
70049092009
-
The graphlet spectrum
-
ACM
-
R. I. Kondor, N. Shervashidze, and K. M. Borgwardt. The graphlet spectrum. In ICML09, volume 382, page 67. ACM, 2009.
-
(2009)
ICML09
, vol.382
, pp. 67
-
-
Kondor, R.I.1
Shervashidze, N.2
Borgwardt, K.M.3
-
20
-
-
30344471433
-
An application of boosting to graph classification
-
T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classification. In NIPS, 2004.
-
(2004)
NIPS
-
-
Kudo, T.1
Maeda, E.2
Matsumoto, Y.3
-
21
-
-
0036358995
-
The spectrum kernel: A string kernel for svm protein classification
-
C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for svm protein classification. In Pac Symp Biocomput, pages 564-75, 2002.
-
(2002)
Pac Symp Biocomput
, pp. 564-575
-
-
Leslie, C.1
Eskin, E.2
Noble, W.3
-
22
-
-
42649140560
-
Newwork-constrained regularization and variable selection for analysis of genomic data
-
C. Li and H. Li. Newwork-constrained regularization and variable selection for analysis of genomic data. Bioinformatics, 24(9):1175-1182, 2008.
-
(2008)
Bioinformatics
, vol.24
, Issue.9
, pp. 1175-1182
-
-
Li, C.1
Li, H.2
-
27
-
-
0028961335
-
SCOP: A structural classification of proteins database for the investigation of sequences and structures
-
A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP: a structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247:536-40, 1995.
-
(1995)
Journal of Molecular Biology
, vol.247
, pp. 536-540
-
-
Murzin, A.1
Brenner, S.2
Hubbard, T.3
Chothia, C.4
-
28
-
-
34948862823
-
Weighted substructure mining for image analysis
-
CVPR '07
-
S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir. Weighted substructure mining for image analysis. In Computer Vision and Pattern Recognition 2007. CVPR '07, pages 1-8, 2007.
-
(2007)
Computer Vision and Pattern Recognition 2007
, pp. 1-8
-
-
Nowozin, S.1
Tsuda, K.2
Uno, T.3
Kudo, T.4
Bakir, G.5
-
29
-
-
62249090283
-
Association rules network: Definition and applications
-
G. Pandey, S. Chawla, S. Poon, B. Arunasalam, and J. G. Davis. Association rules network: Definition and applications. Stat. Anal. Data Min., 1(4):260-279, 2009.
-
(2009)
Stat. Anal. Data Min.
, vol.1
, Issue.4
, pp. 260-279
-
-
Pandey, G.1
Chawla, S.2
Poon, S.3
Arunasalam, B.4
Davis, J.G.5
-
31
-
-
65449142148
-
Partial least squares regression for graph mining
-
H. Saigo, N. Krämer, and K. Tsuda. Partial least squares regression for graph mining. In Proc. SIGKDD08, 2008.
-
(2008)
Proc. SIGKDD08
-
-
Saigo, H.1
Krämer, N.2
Tsuda, K.3
-
32
-
-
60949105177
-
Gboost: A mathematical programming approach to graph classification and regression
-
H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda. gboost: a mathematical programming approach to graph classification and regression. Journal of Machine Learning, 75(1):69-89, 2009.
-
(2009)
Journal of Machine Learning
, vol.75
, Issue.1
, pp. 69-89
-
-
Saigo, H.1
Nowozin, S.2
Kadowaki, T.3
Kudo, T.4
Tsuda, K.5
-
34
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire. The strength of weak learnability. Machine Learning, 5:197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.1
-
35
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.1
Singer, Y.2
-
36
-
-
72749083407
-
Near-optimal supervised feature selection among frequent subgraphs
-
Philadelphia, PA, USA
-
M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. J. Smola, L. Song, P. S. Yu, X. Yan, and K. M. Borgwardt. Near-optimal supervised feature selection among frequent subgraphs. In Proccedings of the 2009 SIAM Conference on Data Mining (SDM 2009), pages 1076-1087. Philadelphia, PA, USA, 2009.
-
(2009)
Proccedings of the 2009 SIAM Conference on Data Mining (SDM 2009)
, pp. 1076-1087
-
-
Thoma, M.1
Cheng, H.2
Gretton, A.3
Han, J.4
Kriegel, H.-P.5
Smola, A.J.6
Song, L.7
Yu, P.S.8
Yan, X.9
Borgwardt, K.M.10
-
37
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso. J. R. Statist. Soc., 67(1)):91-108, 2005.
-
(2005)
J. R. Statist. Soc.
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
38
-
-
77956203852
-
Entire regularization paths for graph data
-
K. Tsuda. Entire regularization paths for graph data. In ICML07, 2007.
-
(2007)
ICML07
-
-
Tsuda, K.1
-
40
-
-
57149124218
-
Mining significant graph patterns by leap search
-
ACM
-
X. Yan, H. Cheng, J. Han, and P. Yu. Mining significant graph patterns by leap search. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 433-444. ACM, 2008.
-
(2008)
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
, pp. 433-444
-
-
Yan, X.1
Cheng, H.2
Han, J.3
Yu, P.4
-
42
-
-
34447335946
-
Grouped and hierarchical model selection through composite absolute penalties
-
P. Zhao and B. Yu. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics, 2006.
-
(2006)
Annals of Statistics
-
-
Zhao, P.1
Yu, B.2
-
44
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67:301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
45
-
-
43049089414
-
F∞ norm support vector machine
-
H. Zou and M. Yuan. F∞ norm support vector machine. Statistica Sinica, 18:379-398, 2008.
-
(2008)
Statistica Sinica
, vol.18
, pp. 379-398
-
-
Zou, H.1
Yuan, M.2
|