메뉴 건너뛰기




Volumn 17, Issue 8, 2005, Pages 1036-1050

Frequent substructure-based approaches for classifying chemical compounds

Author keywords

Chemical compounds; Classification; Graphs; SVM; Virtual screening

Indexed keywords

COMPUTATIONAL TECHNIQUES; SVM; VIRTUAL SCREENING;

EID: 24344484786     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2005.127     Document Type: Article
Times cited : (315)

References (85)
  • 1
    • 84861236293 scopus 로고    scopus 로고
    • Daylight Inc., Mission Viejo, Calif., http://www.daylight.com, 2005.
    • (2005)
  • 2
    • 84861246401 scopus 로고    scopus 로고
    • MDL Information Systems Inc., San Leandro, Calif., http://www.mdl.com, 2005.
    • (2005)
  • 3
  • 4
    • 33646780460 scopus 로고    scopus 로고
    • Comparisons of classification methods for screening potential compounds
    • A. An and Y. Wang, "Comparisons of Classification Methods for Screening Potential Compounds," Proc. Int'l Conf. Data Mining, 2001.
    • (2001) Proc. Int'l Conf. Data Mining
    • An, A.1    Wang, Y.2
  • 5
    • 0026075594 scopus 로고
    • Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors
    • T.A. Andrea and H. Kalayeh, "Applications of Neural Networks in Quantitative Structure-Activity Relationships of Dihydrofolate Reductase Inhibitors," J. Medicinal Chemistry, vol. 34, pp. 2824-2836, 1991.
    • (1991) J. Medicinal Chemistry , vol.34 , pp. 2824-2836
    • Andrea, T.A.1    Kalayeh, H.2
  • 6
    • 0002960718 scopus 로고    scopus 로고
    • New perspectives in lead generation II: Evaluating molecular diversity
    • M.J. Ashton, M.C. Jaye, and J.S. Mason, "New Perspectives in Lead Generation II: Evaluating Molecular Diversity," Drug Discovery Today, 1996.
    • (1996) Drug Discovery Today
    • Ashton, M.J.1    Jaye, M.C.2    Mason, J.S.3
  • 7
    • 0036835460 scopus 로고    scopus 로고
    • Integration of virtual and high throughput screening
    • J. Bajorath, "Integration of Virtual and High Throughput Screening," Nature Rev. Drug Discovery, 2002.
    • (2002) Nature Rev. Drug Discovery
    • Bajorath, J.1
  • 8
    • 0011377311 scopus 로고    scopus 로고
    • Descriptor-based similarity measures for screening chemical databases
    • H.J. Bohm and G. Schneider, eds., Wiley-VCH
    • J.M. Barnard, G.M. Downs, and P. Willet, "Descriptor-Based Similarity Measures for Screening Chemical Databases," Virtual Screening for Bioactive Molecules, H.J. Bohm and G. Schneider, eds., Wiley-VCH, 2000.
    • (2000) Virtual Screening for Bioactive Molecules
    • Barnard, J.M.1    Downs, G.M.2    Willet, P.3
  • 10
    • 0029894013 scopus 로고    scopus 로고
    • The properties of known drugs. 1. Molecular frameworks
    • G.W. Bemis and M.A. Murcko, "The Properties of Known Drugs. 1. Molecular Frameworks," J. Medicinal Chemistry, vol. 39, no. 15, pp. 2887-2893, 1996.
    • (1996) J. Medicinal Chemistry , vol.39 , Issue.15 , pp. 2887-2893
    • Bemis, G.W.1    Murcko, M.A.2
  • 11
    • 0033576605 scopus 로고    scopus 로고
    • The properties of known drugs. 2. Side chains
    • G.W. Bemis and M.A. Murcko, "The Properties of Known Drugs. 2. Side Chains," J. Medicinal Chemistry, vol. 42, no. 25, pp. 5095-5099, 1999.
    • (1999) J. Medicinal Chemistry , vol.42 , Issue.25 , pp. 5095-5099
    • Bemis, G.W.1    Murcko, M.A.2
  • 15
    • 5244364312 scopus 로고    scopus 로고
    • The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding
    • R. Brown and Y. Martin, "The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding," J. Chemical Information and Computer Science, vol. 37, no. 1, pp. 1-9, 1997.
    • (1997) J. Chemical Information and Computer Science , vol.37 , Issue.1 , pp. 1-9
    • Brown, R.1    Martin, Y.2
  • 16
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider, "Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification," J. Chemical Information and Computer Science, vol. 43, no. 6, pp. 1882-1889, 2003.
    • (2003) J. Chemical Information and Computer Science , vol.43 , Issue.6 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 18
    • 0000128084 scopus 로고    scopus 로고
    • Recursive partitioning analysis of a large structure-activity data set using three-dimensional descriptors
    • X. Chen, A. Rusinko, and S.S. Young, "Recursive Partitioning Analysis of a Large Structure-Activity Data Set Using Three-Dimensional Descriptors," J. Chemical information and Computer Science, 1998.
    • (1998) J. Chemical Information and Computer Science
    • Chen, X.1    Rusinko, A.2    Young, S.S.3
  • 19
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • M.R. Berthold and C. Borgelt, "Mining Molecular Fragments: Finding Relevant Substructures of Molecules," Proc. Int'l Conf. Data Mining, 2002.
    • (2002) Proc. Int'l Conf. Data Mining
    • Berthold, M.R.1    Borgelt, C.2
  • 20
  • 22
    • 0010304362 scopus 로고    scopus 로고
    • Molecular diversity and combinatorial chemistry: Libraries and drug discovery
    • E.K. Davies, "Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery," Am. Chemical Soc., 1996.
    • (1996) Am. Chemical Soc.
    • Davies, E.K.1
  • 31
    • 31444452744 scopus 로고
    • Automatic generation of 3D-atomic coordinates for organic molecules
    • J. Gasteiger, C. Rudolph, and J. Sadowski, "Automatic Generation of 3D-Atomic Coordinates for Organic Molecules," Tetrahedron Comp. Method, vol. 3, pp. 537-547, 1990.
    • (1990) Tetrahedron Comp. Method , vol.3 , pp. 537-547
    • Gasteiger, J.1    Rudolph, C.2    Sadowski, J.3
  • 33
    • 0004866803 scopus 로고    scopus 로고
    • Pharmacophore pattern application in virtual screening, library design and QSAR
    • H.J. Bohm and G. Schneider, eds., Wiley-VCH
    • A.C. Good, J.S. Mason, and S.D. Pickett, "Pharmacophore Pattern Application in Virtual Screening, Library Design and QSAR," Virtual Screening for Bioactive Molecules, H.J. Bohm and G. Schneider, eds., Wiley-VCH, 2000.
    • (2000) Virtual Screening for Bioactive Molecules
    • Good, A.C.1    Mason, J.S.2    Pickett, S.D.3
  • 34
    • 0029404240 scopus 로고
    • Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information
    • L.H. Hall and L.B. Kier, "Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information," J. Chemical Information and Computer Science, 1995.
    • (1995) J. Chemical Information and Computer Science
    • Hall, L.H.1    Kier, L.B.2
  • 35
    • 0037079598 scopus 로고    scopus 로고
    • The industrialization of drug discovery
    • Jan.
    • J.S. Handen, "The Industrialization of Drug Discovery," Drug Discovery Today, vol. 7, no. 2, pp. 83-85, Jan. 2002.
    • (2002) Drug Discovery Today , vol.7 , Issue.2 , pp. 83-85
    • Handen, J.S.1
  • 36
    • 34447521097 scopus 로고
    • Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients
    • C. Hansch, P.P. Maolney, T. Fujita, and R.M. Muir, "Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients," Nature, vol. 194, pp. 178-180, 1962.
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Maolney, P.P.2    Fujita, T.3    Muir, R.M.4
  • 37
    • 0005910987 scopus 로고
    • The correlation of biological activity of plant growth-regulators and chloromycetin derivatives with hammett constants and partition coefficients
    • C. Hansch, R.M. Muir, T. Fujita, C.F. Maloney, and M. Streich, "The Correlation of Biological Activity of Plant Growth-Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients," J. Am. Chemical Soc., vol. 85, pp. 2817-1824, 1963.
    • (1963) J. Am. Chemical Soc. , vol.85 , pp. 2817-11824
    • Hansch, C.1    Muir, R.M.2    Fujita, T.3    Maloney, C.F.4    Streich, M.5
  • 42
    • 0038163983 scopus 로고    scopus 로고
    • CLUTO a clustering toolkit
    • Dept. of Computer Science, Univ. of Minnesota
    • G. Karypis, "CLUTO a Clustering Toolkit," Technical Report 02-017, Dept. of Computer Science, Univ. of Minnesota, http://www.cs.umn.edu/ cluto, 2002.
    • (2002) Technical Report , vol.2 , Issue.17
    • Karypis, G.1
  • 44
    • 0030044168 scopus 로고    scopus 로고
    • Strucutre-activity relationships derived by machine learning: The use of atoms and their bond connectivities to predict mutagenecity BYD inductive logic programming
    • Jan.
    • R.D. King, S.H. Muggleton, A. Srinivasan, and M.J.E. Sternberg, "Strucutre-Activity Relationships Derived by Machine Learning: The Use of Atoms and Their Bond Connectivities to Predict Mutagenecity BYD Inductive Logic Programming," Proc. Nat'l Academy of Science, vol. 93, pp. 438-442, Jan. 1996.
    • (1996) Proc. Nat'l Academy of Science , vol.93 , pp. 438-442
    • King, R.D.1    Muggleton, S.H.2    Srinivasan, A.3    Sternberg, M.J.E.4
  • 45
    • 0026459988 scopus 로고
    • Drug design by machine learning: The use of inductive logic programming to model the sturcture-activity relationships of trimethoprim analogues binding to dihydrofolate reductase
    • Dec.
    • R.D. King, S. Muggleton, R.A. Lewis, and J.E. Sternberg, "Drug Design by Machine Learning: The Use of Inductive Logic Programming to Model the Sturcture-Activity Relationships of Trimethoprim Analogues Binding to Dihydrofolate Reductase," Proc. Nat'l Academy of Science, vol. 89, pp. 11322-11326, Dec. 1992.
    • (1992) Proc. Nat'l Academy of Science , vol.89 , pp. 11322-11326
    • King, R.D.1    Muggleton, S.2    Lewis, R.A.3    Sternberg, J.E.4
  • 47
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • also available as a UMN-CS Technical Report, TR# 01-028
    • M. Kuramochi and G. Karypis, "Frequent Subgraph Discovery," Proc. IEEE Int'l Conf. Data Mining, 2001, also available as a UMN-CS Technical Report, TR# 01-028.
    • (2001) Proc. IEEE Int'l Conf. Data Mining
    • Kuramochi, M.1    Karypis, G.2
  • 48
    • 12244301381 scopus 로고    scopus 로고
    • Discovering geometric frequent subgraph
    • also available as a UMN-CS Technical Report, TR# 02-024
    • M. Kuramochi and G. Karypis, "Discovering Geometric Frequent Subgraph," Proc. IEEE Int'l Conf. Data Mining, 2002, also available as a UMN-CS Technical Report, TR# 02-024.
    • (2002) Proc. IEEE Int'l Conf. Data Mining
    • Kuramochi, M.1    Karypis, G.2
  • 49
    • 24344490979 scopus 로고    scopus 로고
    • Discovering frequent geometric subgraphs
    • Dept. of Computer Science, Univ. of Minnesota
    • M. Kuramochi and G. Karypis, "Discovering Frequent Geometric Subgraphs," Technical Report 04-039, Dept. of Computer Science, Univ. of Minnesota, 2004.
    • (2004) Technical Report , vol.4 , Issue.39
    • Kuramochi, M.1    Karypis, G.2
  • 50
    • 4544385908 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • Sept.
    • M. Kuramochi and G. Karypis, "An Efficient Algorithm for Discovering Frequent Subgraphs," IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9, pp. 1038-1051, Sept. 2004.
    • (2004) IEEE Trans. Knowledge and Data Eng. , vol.16 , Issue.9 , pp. 1038-1051
    • Kuramochi, M.1    Karypis, G.2
  • 51
    • 0032605748 scopus 로고    scopus 로고
    • Binary QSAR: A new method for the determination of quantitative structure activity relationships
    • P. Labute, "Binary QSAR: A New Method for the Determination of Quantitative Structure Activity Relationships," Proc. Pacific Symp. Biocomputing, 1999.
    • (1999) Proc. Pacific Symp. Biocomputing
    • Labute, P.1
  • 52
    • 84912079256 scopus 로고
    • Rapid approximation to molecular surface area via the use of boolean logic look-up tables
    • S.M. Le Grand and J.K.M. Merz, "Rapid Approximation to Molecular Surface Area via the Use of Boolean Logic Look-Up Tables," J. Computational Chemistry, vol. 14, pp. 349-352, 1993.
    • (1993) J. Computational Chemistry , vol.14 , pp. 349-352
    • Le Grand, S.M.1    Merz, J.K.M.2
  • 54
    • 0032058905 scopus 로고    scopus 로고
    • RECAP retrosynthetic combinatorial analysis procedure: A powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry
    • X.Q. Lewell, D.B. Judd, S.P. Watson, and M.M. Hann, "RECAP Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry," J. Chemical Information and Computer Science, vol. 38, no. 3, pp. 511-522, 1998.
    • (1998) J. Chemical Information and Computer Science , vol.38 , Issue.3 , pp. 511-522
    • Lewell, X.Q.1    Judd, D.B.2    Watson, S.P.3    Hann, M.M.4
  • 55
    • 78149313084 scopus 로고    scopus 로고
    • CMAR: Accurate and efficient classification based on multiple class-association rules
    • W. Li, J. Han, and J. Pei, "CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules," Proc. IEEE Int'l Conf. Data Mining, 2001.
    • (2001) Proc. IEEE Int'l Conf. Data Mining
    • Li, W.1    Han, J.2    Pei, J.3
  • 58
    • 0000353230 scopus 로고    scopus 로고
    • The characterization of chemical structures using molecular properties. A survey
    • D.J. Livingstone, "The Characterization of Chemical Structures Using Molecular Properties. A Survey," J. Chemical Information and Computer Science, 2000.
    • (2000) J. Chemical Information and Computer Science
    • Livingstone, D.J.1
  • 60
    • 0003260442 scopus 로고    scopus 로고
    • Combining statistical learning with a knowledge-based approach - A case study in intensive care monitoring
    • K. Morik, P. Brockhausen, and T. Joachims, "Combining Statistical Learning with a Knowledge-Based Approach - A Case Study in Intensive Care Monitoring," Proc. Int'l Conf. Machine Learning, 1999.
    • (1999) Proc. Int'l Conf. Machine Learning
    • Morik, K.1    Brockhausen, P.2    Joachims, T.3
  • 61
    • 77951503082 scopus 로고
    • Inverse entailment and progol
    • S. Muggleton, "Inverse Entailment and Progol," New Generation Computing, vol. 13, pp. 245-286, 1995.
    • (1995) New Generation Computing , vol.13 , pp. 245-286
    • Muggleton, S.1
  • 62
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • S. Muggleton and L. De Raedt, "Inductive Logic Programming: Theory and Methods," J. Logic Programming, vol. 19, no. 20, pp. 629-679, 1994.
    • (1994) J. Logic Programming , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.1    De Raedt, L.2
  • 63
    • 0002304628 scopus 로고
    • Efficient induction of logic programs
    • S. Muggleton, ed., London: Academic Press
    • S.H. Muggleton and C. Feng, "Efficient Induction of Logic Programs," Inductive Logic Programming, S. Muggleton, ed., pp. 281-298, London: Academic Press, 1992.
    • (1992) Inductive Logic Programming , pp. 281-298
    • Muggleton, S.H.1    Feng, C.2
  • 69
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett, "Robust Classification for Imprecise Environments," Machine Learning, vol. 42, no. 3, 2001.
    • (2001) Machine Learning , vol.42 , Issue.3
    • Provost, F.1    Fawcett, T.2
  • 71
    • 0036633496 scopus 로고    scopus 로고
    • Virtual screening using grid computing: The screensaver project
    • July
    • G.W. Richards, "Virtual Screening Using Grid Computing: The Screensaver Project," Nature Rev.: Drug Discovery, vol. 1, pp. 551-554, July 2002.
    • (2002) Nature Rev.: Drug Discovery , vol.1 , pp. 551-554
    • Richards, G.W.1
  • 77
    • 22644452635 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • A. Sriniviasan and R. King, "Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes," Knowledge Discovery and Data Mining J., vol. 3, pp. 37-57, 1999.
    • (1999) Knowledge Discovery and Data Mining J. , vol.3 , pp. 37-57
    • Sriniviasan, A.1    King, R.2
  • 78
    • 0037019264 scopus 로고    scopus 로고
    • Data analysis of high-throughput screening results: Application of multidomain clustering to the NCI anti-HIV data set
    • S.Y. Tamura, P.A. Bacha, H.S. Gruver, and R.F. Nutt, "Data Analysis of High-Throughput Screening Results: Application of Multidomain Clustering to the NCI Anti-HIV Data Set," J. Medicinal Chemistry, 2002.
    • (2002) J. Medicinal Chemistry
    • Tamura, S.Y.1    Bacha, P.A.2    Gruver, H.S.3    Nutt, R.F.4
  • 82
  • 83
    • 0008721810 scopus 로고    scopus 로고
    • Fast vertical mining using diffsets
    • Dept. of Computer Science, Rensselaer Polytechnic Inst.
    • M.J. Zaki and K. Gouda, "Fast Vertical Mining Using Diffsets," Technical Report 01-1, Dept. of Computer Science, Rensselaer Polytechnic Inst., 2001.
    • (2001) Technical Report , vol.1 , Issue.1
    • Zaki, M.J.1    Gouda, K.2
  • 84
    • 0033718951 scopus 로고    scopus 로고
    • Scalable algorithms for association mining
    • M. Javeed Zaki, "Scalable Algorithms for Association Mining," Knowledge and Data Eng., vol. 12, no. 2, pp. 372-390, 2000.
    • (2000) Knowledge and Data Eng. , vol.12 , Issue.2 , pp. 372-390
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.