메뉴 건너뛰기




Volumn 9, Issue 8, 2017, Pages

Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil

Author keywords

Multitemporal information; Random forest; Support vector machine; Textural features; Vegetation indices

Indexed keywords

DECISION TREES; FORESTRY; LEARNING ALGORITHMS; LEARNING SYSTEMS; REFLECTION; SUPPORT VECTOR MACHINES; TROPICS; VEGETATION;

EID: 85027469296     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9080838     Document Type: Article
Times cited : (106)

References (102)
  • 1
    • 84961904638 scopus 로고    scopus 로고
    • Classification of landscape types based on land cover, successional stages and plant functional groups in a species-rich forest in Hainan Island, China
    • Zhang, Z., Zang, R., Wang, G., Huang, X. Classification of landscape types based on land cover, successional stages and plant functional groups in a species-rich forest in Hainan Island, China. Trop. Conserv. Sci. 2016, 9, 135-152.
    • (2016) Trop. Conserv. Sci. , vol.9 , pp. 135-152
    • Zhang, Z.1    Zang, R.2    Wang, G.3    Huang, X.4
  • 2
    • 0003143160 scopus 로고    scopus 로고
    • Biology and Conservation of Forest Fragments in Brasilian Atlantic Moist Forest.
    • Scheilas, J., Greenberg, R., Eds., Island Press: Washington, DC, USA
    • Viana, V., Tabanez, A.J. Biology and Conservation of Forest Fragments in Brasilian Atlantic Moist Forest. In Forest Patches in Tropical Landscapes; Scheilas, J., Greenberg, R., Eds., Island Press: Washington, DC, USA, 1996.
    • (1996) In Forest Patches in Tropical Landscapes
    • Viana, V.1    Tabanez, A.J.2
  • 3
    • 63349103172 scopus 로고    scopus 로고
    • The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation
    • Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141-1153.
    • (2009) Biol. Conserv. , vol.142 , pp. 1141-1153
    • Ribeiro, M.C.1    Metzger, J.P.2    Martensen, A.C.3    Ponzoni, F.J.4    Hirota, M.M.5
  • 4
    • 78751512242 scopus 로고    scopus 로고
    • Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change
    • Colombo, A.F., Joly, C.A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 2010, 70, 697-708.
    • (2010) Braz. J. Biol. , vol.70 , pp. 697-708
    • Colombo, A.F.1    Joly, C.A.2
  • 6
    • 0027707305 scopus 로고
    • Spectral identification of successional stages following deforestation in the Amazon
    • Mausel, P., Wu, Y., Li, Y., Moran, E.F., Brondizio, E.S. Spectral identification of successional stages following deforestation in the Amazon. Geocarto Int. 1993, 8, 61-71.
    • (1993) Geocarto Int. , vol.8 , pp. 61-71
    • Mausel, P.1    Wu, Y.2    Li, Y.3    Moran, E.F.4    Brondizio, E.S.5
  • 7
    • 0041973785 scopus 로고    scopus 로고
    • Classification of Successional Forest Stages in the Brazilian Amazon Basin
    • Lu, D., Mausel, P., Brondízio, E., Moran, E. Classification of Successional Forest Stages in the Brazilian Amazon Basin. Forest Ecol. Manag. 2003, 181, 301-312.
    • (2003) Forest Ecol. Manag. , vol.181 , pp. 301-312
    • Lu, D.1    Mausel, P.2    Brondízio, E.3    Moran, E.4
  • 9
    • 84918827996 scopus 로고    scopus 로고
    • A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon
    • Lu, D., Li, G., Moran, E., Kuang, W. A comparative analysis of approaches for successional vegetation classification in the Brazilian Amazon. GISci. Remote Sens. 2014, 51, 695-709.
    • (2014) GISci. Remote Sens. , vol.51 , pp. 695-709
    • Lu, D.1    Li, G.2    Moran, E.3    Kuang, W.4
  • 11
    • 84901651305 scopus 로고    scopus 로고
    • Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers
    • Adam, E., Mutanga, O., Odindi, J., Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440-3458.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 3440-3458
    • Adam, E.1    Mutanga, O.2    Odindi, J.3    Abdel-Rahman, E.M.4
  • 12
    • 85027446472 scopus 로고    scopus 로고
    • Procedimentos Baseados em Segmentação para a Análise de Mudanças e Classificação Florestais com Dados de Satélite de Alta Resolução.
    • 2nd ed., Blaschke, T., Kux, H., Eds., Oficina de Textos: São Paulo, Brazil
    • Janoth, J., Eisl, M., Klaushofer, F., Luckel,W. Procedimentos Baseados em Segmentação para a Análise de Mudanças e Classificação Florestais com Dados de Satélite de Alta Resolução. In Sensoriamento Remoto e SIG Avançados, 2nd ed., Blaschke, T., Kux, H., Eds., Oficina de Textos: São Paulo, Brazil, 2007.
    • (2007) In Sensoriamento Remoto e SIG Avançados
    • Janoth, J.1    Eisl, M.2    Klaushofer, F.3    Luckel, W.4
  • 13
    • 0442329987 scopus 로고    scopus 로고
    • Classifying successional forests using Landsat spectral properties and ecological characteristics in Eastern Amazônia
    • Vieira, I.C.G., Almeida, A.S., Davidson, E.A., Stone, T.A., Carvalho, C.J.R., Guerrero, J.B. Classifying successional forests using Landsat spectral properties and ecological characteristics in Eastern Amazônia. Remote Sens. Environ. 2003, 87, 470-481.
    • (2003) Remote Sens. Environ. , vol.87 , pp. 470-481
    • Vieira, I.C.G.1    Almeida, A.S.2    Davidson, E.A.3    Stone, T.A.4    Carvalho, C.J.R.5    Guerrero, J.B.6
  • 14
    • 69149101655 scopus 로고    scopus 로고
    • Caracterização espectral de estágios sucessionais de vegetação secundária arbórea em Altamira (PA), através de dados orbitais
    • Ponzoni, F.J., Rezende, A.N.P. Caracterização espectral de estágios sucessionais de vegetação secundária arbórea em Altamira (PA), através de dados orbitais. Rev. árvore 2004, 28, 535-545.
    • (2004) Rev. árvore , vol.28 , pp. 535-545
    • Ponzoni, F.J.1    Rezende, A.N.P.2
  • 15
    • 56949086832 scopus 로고    scopus 로고
    • Possibilities of Discriminating Tropical Secondary Succession in Amazônia using Hyperspectral and Multiangular CHRIS/PROBA Data
    • Galvão, L.S., Ponzoni, F.J., Liesenberg, V., Santos, J.R.D. Possibilities of Discriminating Tropical Secondary Succession in Amazônia using Hyperspectral and Multiangular CHRIS/PROBA Data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 8-14.
    • (2009) Int. J. Appl. Earth Obs. Geoinf. , vol.11 , pp. 8-14
    • Galvão, L.S.1    Ponzoni, F.J.2    Liesenberg, V.3    Santos, J.R.D.4
  • 16
    • 69149091436 scopus 로고    scopus 로고
    • Avaliação e comparação de métodos de classificação de imagens de satélites para o mapeamento de estádios de sucessão florestal
    • Amaral, M.V.F., de Souza, A.L., Soares, V.P., Soares, C.P.B., Leite, H.G., Martins, S.V., Filho, E.I.F., Lana, J.M. Avaliação e comparação de métodos de classificação de imagens de satélites para o mapeamento de estádios de sucessão florestal. Rev. árvore 2009, 33, 575-582.
    • (2009) Rev. árvore , vol.33 , pp. 575-582
    • Amaral, M.V.F.1    de Souza, A.L.2    Soares, V.P.3    Soares, C.P.B.4    Leite, H.G.5    Martins, S.V.6    Filho, E.I.F.7    Lana, J.M.8
  • 17
    • 82055178195 scopus 로고    scopus 로고
    • Land-Cover Classification in a Moist Tropical Region of Brazil with Landsat Thematic Mapper Imagery
    • Li, G., Lu, D., Moran, E., Hetrick, S. Land-Cover Classification in a Moist Tropical Region of Brazil with Landsat Thematic Mapper Imagery. Int. J. Remote Sens. 2011, 32, 8207-8230.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 8207-8230
    • Li, G.1    Lu, D.2    Moran, E.3    Hetrick, S.4
  • 18
    • 80052646915 scopus 로고    scopus 로고
    • A Comparison of Multisensor Integration Methods for Land-cover Classification in the Brazilian Amazon
    • Lu, D., Li, G., Moran, E., Dutra, L., Batistella, M. A Comparison of Multisensor Integration Methods for Land-cover Classification in the Brazilian Amazon. GISci. Remote Sens. 2011, 48, 345-370.
    • (2011) GISci. Remote Sens. , vol.48 , pp. 345-370
    • Lu, D.1    Li, G.2    Moran, E.3    Dutra, L.4    Batistella, M.5
  • 19
    • 85008517556 scopus 로고    scopus 로고
    • Applying data mining techniques to the classification of successional forest stages mixed shade tolerant forest environments
    • Sothe, C., Schimalski, M.B., Liesenberg, V., de Almeida, C.M., de Souza, C.F., de Souza, J.B. Applying data mining techniques to the classification of successional forest stages mixed shade tolerant forest environments. Sci. For. 2016, 44, 863-873.
    • (2016) Sci. For. , vol.44 , pp. 863-873
    • Sothe, C.1    Schimalski, M.B.2    Liesenberg, V.3    de Almeida, C.M.4    de Souza, C.F.5    de Souza, J.B.6
  • 20
    • 85027458907 scopus 로고    scopus 로고
    • Approaches for classifying successional forest stages in São Joaquim National Park using Landsat-8 and RapidEye images.
    • in press.
    • Sothe, C., Schimalski, M.B., Liesenberg, V., de Almeida, C.M. Approaches for classifying successional forest stages in São Joaquim National Park using Landsat-8 and RapidEye images. Bol. Ciênc. Geod. 2017, 23. in press.
    • (2017) Bol. Ciênc. Geod. , pp. 23
    • Sothe, C.1    Schimalski, M.B.2    Liesenberg, V.3    de Almeida, C.M.4
  • 21
    • 84959557258 scopus 로고    scopus 로고
    • Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high-spatial resolution images
    • Piazza, A.G., Vibrans, A.C., Liesenberg, V., Refosco, J.C. Object-oriented and pixel-based classification approaches to classify tropical successional stages using airborne high-spatial resolution images. GISci. Remote Sens. 2016, 53, 206-226.
    • (2016) GISci. Remote Sens. , vol.53 , pp. 206-226
    • Piazza, A.G.1    Vibrans, A.C.2    Liesenberg, V.3    Refosco, J.C.4
  • 22
    • 84893747703 scopus 로고    scopus 로고
    • Continuous change detection and classification of land cover using all available Landsat data
    • Zhu, Z.;Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152-171.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 152-171
    • Zhu Z.1    Woodcock, C.E.2
  • 24
    • 84865406893 scopus 로고    scopus 로고
    • The next Landsat satellite: The Landsat Data Continuity Mission
    • Irons, J.R., Dwyer, J.L., Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11-21.
    • (2012) Remote Sens. Environ. , vol.122 , pp. 11-21
    • Irons, J.R.1    Dwyer, J.L.2    Barsi, J.A.3
  • 26
    • 84879584263 scopus 로고    scopus 로고
    • Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
    • Frampton, W.J., Dash, J., Watmough, G., Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83-92.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.82 , pp. 83-92
    • Frampton, W.J.1    Dash, J.2    Watmough, G.3    Milton, E.J.4
  • 27
    • 84962488348 scopus 로고    scopus 로고
    • First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe
    • Immitzer, M., Vuolo, F., Clement Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166.
    • (2016) Remote Sens. , vol.8 , pp. 166
    • Immitzer, M.1    Vuolo, F.2    Clement Atzberger, C.3
  • 28
    • 84988896842 scopus 로고    scopus 로고
    • Contribution of Sentinel-2 data for applications in vegetation monitoring
    • Addabbo, P., Focareta, M., Marcuccio, S., Votto, C., Ullo, S.L. Contribution of Sentinel-2 data for applications in vegetation monitoring. Acta IMEKO 2016, 5, 44-54.
    • (2016) Acta IMEKO , vol.5 , pp. 44-54
    • Addabbo, P.1    Focareta, M.2    Marcuccio, S.3    Votto, C.4    Ullo, S.L.5
  • 29
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D.;Weng, Q. A Survey of Image Classification Methods and Techniques for Improving Classification Performance. Int. J. Remote Sens. 2007, 28, 823-870.
    • (2007) Int. J. Remote Sens. , vol.28 , pp. 823-870
    • Lu D.1    Weng, Q.2
  • 30
    • 85019721788 scopus 로고    scopus 로고
    • Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms.
    • Deng, S., Katoh, M., Xiaowei, Y., Hyyppä, J., Gao, T. Comparison of Tree Species Classifications at the Individual Tree Level by Combining ALS Data and RGB Images Using Different Algorithms. Remote Sens. 2016.
    • (2016) Remote Sens.
    • Deng, S.1    Katoh, M.2    Xiaowei, Y.3    Hyyppä, J.4    Gao, T.5
  • 31
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: Bagging and random forests for ecological prediction
    • Prasad, A.M., Iverson, L.R., Liaw, A. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems 2006, 9, 181-199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 32
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment
    • Naidoo, L., Cho, M.A., Mathieu, R., Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167-179.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.69 , pp. 167-179
    • Naidoo, L.1    Cho, M.A.2    Mathieu, R.3    Asner, G.4
  • 33
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 34
    • 85017406334 scopus 로고    scopus 로고
    • A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
    • Li, M., Ma, L., Blaschke, T., Cheng, L., Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87-98.
    • (2016) Int. J. Appl. Earth Obs. Geoinf. , vol.49 , pp. 87-98
    • Li, M.1    Ma, L.2    Blaschke, T.3    Cheng, L.4    Tiede, D.5
  • 35
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data
    • Dalponte, M., Bruzzone, L., Gianelle, D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data. Remote Sens. Environ. 2012, 123, 258-270.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 36
    • 84871745702 scopus 로고    scopus 로고
    • Tree species discrimination in tropical forests using airborne imaging spectroscopy
    • Féret, J., Asner, G.P. Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans. Geosci. Remote Sens. 2013, 51, 73-84.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 73-84
    • Féret, J.1    Asner, G.P.2
  • 37
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
    • Gosh, A., Fassnacht, E.F., Joshi, P.K., Koch, B. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 49-63.
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 49-63
    • Gosh, A.1    Fassnacht, E.F.2    Joshi, P.K.3    Koch, B.4
  • 38
  • 39
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • Clark, M.L., Roberts, D.A., Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375-398.
    • (2005) Remote Sens. Environ. , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 40
    • 84864969220 scopus 로고    scopus 로고
    • Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier
    • Clark, M.L., Roberts, D.A. Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sens. 2012, 4, 1820-1855.
    • (2012) Remote Sens. , vol.4 , pp. 1820-1855
    • Clark, M.L.1    Roberts, D.A.2
  • 42
    • 84991408424 scopus 로고    scopus 로고
    • Mapping prosopis juliflora in west somaliland with landsat 8 satellite imagery and ground information
    • Meroni, M., Ng, W-T., Rembold, F., Leonardi, U., Atzberger, C., Gadain, H., Shaiy, M. Mapping prosopis juliflora in west somaliland with landsat 8 satellite imagery and ground information. Land Degrad. Dev. 2017, 28, 494-506.
    • (2017) Land Degrad. Dev. , vol.28 , pp. 494-506
    • Meroni, M.1    Ng, W-T.2    Rembold, F.3    Leonardi, U.4    Atzberger, C.5    Gadain, H.6    Shaiy, M.7
  • 45
    • 3042720012 scopus 로고    scopus 로고
    • Phenological patterns among plant life-forms in a subtropical forest in southern Brazil
    • Marques, M.C.M., Roper, J.J., Salvalaggio, A.P.B. Phenological patterns among plant life-forms in a subtropical forest in southern Brazil. Plant Ecol. 2004, 173, 203-213.
    • (2004) Plant Ecol. , vol.173 , pp. 203-213
    • Marques, M.C.M.1    Roper, J.J.2    Salvalaggio, A.P.B.3
  • 46
    • 0345308554 scopus 로고    scopus 로고
    • Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty
    • Song, C., Woodcock, C.E. Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2557-2567.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , pp. 2557-2567
    • Song, C.1    Woodcock, C.E.2
  • 47
    • 85027449482 scopus 로고
    • Resolução CONAMA no 04/94, de 4 de maio de (accessed on 7 June 2017).
    • Resolução CONAMA no 04/94, de 4 de maio de 1994. Available online: http://www.mma.gov.br/port/ conama/legiano1.cfm?codlegitipo=3&ano=1994 (accessed on 7 June 2017).
    • (1994)
  • 48
    • 0006540822 scopus 로고
    • Considerações sobre a regeneração natural da Araucaria angustifolia
    • Soares, R.V. Considerações sobre a regeneração natural da Araucaria angustifolia. Rev. Floresta 1979, 10, 11-18.
    • (1979) Rev. Floresta , vol.10 , pp. 11-18
    • Soares, R.V.1
  • 50
    • 0025455577 scopus 로고
    • Evaluation of the Grey-Level Co-occurrence Matrix Method for Land-cover Classification using SPOT Imagery
    • Marceau, D.J., Howarth, P.J., Dubois, J.M., Gratton, D.J. Evaluation of the Grey-Level Co-occurrence Matrix Method for Land-cover Classification using SPOT Imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513-519.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , pp. 513-519
    • Marceau, D.J.1    Howarth, P.J.2    Dubois, J.M.3    Gratton, D.J.4
  • 51
    • 34447521668 scopus 로고    scopus 로고
    • Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification
    • Johansen, K., Coops, N.C., Gergel, S.E., Stange, Y. Application of High Spatial Resolution Satellite Imagery for Riparian and Forest Ecosystem Classification. Remote Sens. Environ. 2007, 110, 29-44.
    • (2007) Remote Sens. Environ. , vol.110 , pp. 29-44
    • Johansen, K.1    Coops, N.C.2    Gergel, S.E.3    Stange, Y.4
  • 52
    • 33745615125 scopus 로고    scopus 로고
    • Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
    • Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., Schirokauer, D. Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799-811.
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 53
    • 84897924650 scopus 로고    scopus 로고
    • Object-based image analysis for vegetation physiognomies classification in high spatial resolution images
    • Furtado, L.F.A., Francisco, C.N., Almeida, C.M. Object-based image analysis for vegetation physiognomies classification in high spatial resolution images. Geociências 2013, 32, 441-451.
    • (2013) Geociências , vol.32 , pp. 441-451
    • Furtado, L.F.A.1    Francisco, C.N.2    Almeida, C.M.3
  • 54
    • 33044489660 scopus 로고    scopus 로고
    • Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon
    • Lu, D., Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazonica 2005, 35, 249-257.
    • (2005) Acta Amazonica , vol.35 , pp. 249-257
    • Lu, D.1    Batistella, M.2
  • 55
    • 84901479073 scopus 로고    scopus 로고
    • Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest
    • Attarchi, S., Gloaguen, R. Classifying Complex Mountainous Forests with L-Band SAR and Landsat Data Integration: A Comparison among Different Machine Learning Methods in the Hyrcanian Forest. Remote Sens. 2014, 6, 3624-3647.
    • (2014) Remote Sens. , vol.6 , pp. 3624-3647
    • Attarchi, S.1    Gloaguen, R.2
  • 56
    • 0028326339 scopus 로고
    • Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves
    • Gitelson, A.A., Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247-252.
    • (1994) J. Photochem. Photobiol. B Biol. , vol.22 , pp. 247-252
    • Gitelson, A.A.1    Merzlyak, M.N.2
  • 57
    • 44449085273 scopus 로고    scopus 로고
    • Application of Spectral Remote Sensing for Agronomic Decisions
    • Hatfield, J.L., Gitelson, A.A., Schepers, J.S., WalthalL, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, 117-131.
    • (2008) Agron. J. , vol.100 , pp. 117-131
    • Hatfield, J.L.1    Gitelson, A.A.2    Schepers, J.S.3    WalthalL, C.L.4
  • 58
    • 82055173070 scopus 로고    scopus 로고
    • On the terminology of the spectral vegetation index (NIR - SWIR)/(NIR + SWIR)
    • Ji, L., Zhang, L.;Wylie, B.K., Rover, J. On the terminology of the spectral vegetation index (NIR - SWIR)/(NIR + SWIR). Int. J. Remote Sens. 2011, 32, 6901-6909.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 6901-6909
    • Ji, L.1    Zhang L.2    Wylie, B.K.3    Rover, J.4
  • 60
    • 0000855550 scopus 로고
    • Distinguishing vegetation from soil background information
    • Richardson, A.J.;Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 1, 1541-1552.
    • (1977) Photogramm. Eng. Remote Sens. , vol.1 , pp. 1541-1552
    • Richardson A.J.1    Wiegand, C.L.2
  • 61
    • 0030453414 scopus 로고    scopus 로고
    • Use of a green channel in remote sensing of global vegetation from EOS-MODIS
    • Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289-298.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 289-298
    • Gitelson, A.A.1    Kaufman, Y.J.2    Merzlyak, M.N.3
  • 62
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127-150.
    • (1979) Remote Sens. Environ. , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 63
    • 0029751226 scopus 로고    scopus 로고
    • Optimization of soil-adjusted vegetation indices
    • Rondeaux, G., Steven, M., Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95-107.
    • (1996) Remote Sens. Environ. , vol.55 , pp. 95-107
    • Rondeaux, G.1    Steven, M.2    Baret, F.3
  • 64
    • 0021091121 scopus 로고
    • The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies
    • Hardisky, M.A., Klemas, V., Smart, R.M. The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77-83.
    • (1983) Photogramm. Eng. Remote Sens. , vol.49 , pp. 77-83
    • Hardisky, M.A.1    Klemas, V.2    Smart, R.M.3
  • 65
    • 84975453750 scopus 로고    scopus 로고
    • Mapping of land cover in northern California with simulated hyperspectral satellite imagery
    • Clark, M.L., Kilham, N.E. Mapping of land cover in northern California with simulated hyperspectral satellite imagery. ISPRS J. Photogramm. Rem. Sens. 2016, 119, 228-245.
    • (2016) ISPRS J. Photogramm. Rem. Sens. , vol.119 , pp. 228-245
    • Clark, M.L.1    Kilham, N.E.2
  • 66
    • 77951295936 scopus 로고    scopus 로고
    • Feature Selection for Classification of Hyperspectral Data by SVM
    • Pal, M., Foody, G.M.P. Feature Selection for Classification of Hyperspectral Data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297-2307.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.P.2
  • 67
    • 85014908663 scopus 로고    scopus 로고
    • Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
    • Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51.
    • (2017) ISPRS Int. J. Geo-Inf. , vol.6 , pp. 51
    • Ma, L.1    Fu, T.2    Blaschke, T.3    Li, M.4    Tiede, D.5    Zhou, Z.6    Chen, D.7
  • 68
    • 84856982478 scopus 로고    scopus 로고
    • Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
    • Duro, D.C., Franklin, S.E., Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502-4526.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 69
    • 84932642625 scopus 로고    scopus 로고
    • A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data.
    • Hira, Z.M., Gillies, D.F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv. Bioinf. 2015.
    • (2015) Adv. Bioinf.
    • Hira, Z.M.1    Gillies, D.F.2
  • 70
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Maldonado, S.;Weber, R. A wrapper method for feature selection using support vector machines. Inf. Sci. 2009, 179, 2208-2217.
    • (2009) Inf. Sci. , vol.179 , pp. 2208-2217
    • Maldonado S.1    Weber, R.2
  • 71
    • 84897879307 scopus 로고    scopus 로고
    • Object-oriented mapping of urban trees using random forest classifiers
    • Puissant, A., Rougier, S., Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235-245.
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 235-245
    • Puissant, A.1    Rougier, S.2    Stumpf, A.3
  • 72
    • 85009892662 scopus 로고    scopus 로고
    • A Novel Wrapper Approach for Feature Selection in Object-Based Image Classification Using Polygon-Based Cross-Validation
    • Ma, L., Li, M., Gao, Y., Chen, T., Ma, X., Qu, L. A Novel Wrapper Approach for Feature Selection in Object-Based Image Classification Using Polygon-Based Cross-Validation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 409-413.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , pp. 409-413
    • Ma, L.1    Li, M.2    Gao, Y.3    Chen, T.4    Ma, X.5    Qu, L.6
  • 73
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection.
    • Kohavi, R., John, G.H.Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 78
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 79
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • Huang, C., Davis, L.S., Townshend, J.R.G. An assessment of support vector machines for land cover classification. Remote Sens. 2002, 23, 725-749.
    • (2002) Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 80
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C., Franklin, S.E., Dube, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dube, M.G.3
  • 81
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.1
  • 84
    • 0003973982 scopus 로고    scopus 로고
    • In Spatial Statistics for Remote Sensing; Stein, A., van der Meer, F.D., Gorte, B., Eds., Kluwer Academic Publishers: Dordrecht, The Netherlands
    • Skidmore, A.K. Accuracy Assessment of Spatial Information. In Spatial Statistics for Remote Sensing; Stein, A., van der Meer, F.D., Gorte, B., Eds., Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 197-209.
    • (1999) Accuracy Assessment of Spatial Information. , pp. 197-209
    • Skidmore, A.K.1
  • 85
    • 85027442291 scopus 로고    scopus 로고
    • Classification of multi-spectral, multi-temporal and multi-sensor images using principal components analysis and artificial neural networks: Beykoz case.
    • Melbourne, Australia, 25 August-1 September
    • Cetin, M., Kavzoglu, T., Musaoglu, N. Classification of multi-spectral, multi-temporal and multi-sensor images using principal components analysis and artificial neural networks: Beykoz case. In Proceedings of the XXXV ISPRS Congress, Melbourne, Australia, 25 August-1 September 2012; p. 408.
    • (2012) In Proceedings of the XXXV ISPRS Congress , pp. 408
    • Cetin, M.1    Kavzoglu, T.2    Musaoglu, N.3
  • 88
    • 0002202606 scopus 로고
    • Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data
    • Goel, N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 1988, 4, 1-21.
    • (1988) Remote Sens. Rev. , vol.4 , pp. 1-21
    • Goel, N.S.1
  • 89
    • 0346875638 scopus 로고    scopus 로고
    • Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks
    • Murthy, C.S., Raju, P.V., Badrinath, K.V.S. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871-4890.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 4871-4890
    • Murthy, C.S.1    Raju, P.V.2    Badrinath, K.V.S.3
  • 90
    • 55349114714 scopus 로고    scopus 로고
    • Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forests, and Support Vector Regression
    • Walton, J.T. Subpixel Urban Land Cover Estimation: Comparing Cubist, Random Forests, and Support Vector Regression. Photogramm. Eng. Remote Sens. 2008, 74, 1213-1222.
    • (2008) Photogramm. Eng. Remote Sens. , vol.74 , pp. 1213-1222
    • Walton, J.T.1
  • 91
    • 84856742245 scopus 로고    scopus 로고
    • Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification
    • Novack, T., Esch, T., Kux, H., Stilla, U. Machine Learning Comparison between WorldView-2 and QuickBird-2-Simulated Imagery Regarding Object-Based Urban Land Cover Classification. Remote Sens. 2011, 3, 2263-2282.
    • (2011) Remote Sens. , vol.3 , pp. 2263-2282
    • Novack, T.1    Esch, T.2    Kux, H.3    Stilla, U.4
  • 92
    • 84979530265 scopus 로고    scopus 로고
    • Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping.
    • Remote Sensing and Spatial Information Sciences, 41-B8, XXIII ISPRS Congress, Prague, Czech Republic, 12-19 July
    • Topaloglu, R.H., Sertela, E., Musaoglu, N. Assessment of classification accuracies of Sentinel-2 and Landsat-8 data for land cover/use mapping. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41-B8, XXIII ISPRS Congress, Prague, Czech Republic, 12-19 July 2016; pp. 1055-1059.
    • (2016) In Proceedings of the International Archives of the Photogrammetry , pp. 1055-1059
    • Topaloglu, R.H.1    Sertela, E.2    Musaoglu, N.3
  • 94
    • 85027450608 scopus 로고    scopus 로고
    • Análise de textura de imagem de alta resolução para aprimorar a acurácia da classificação da mata atlântica no sul da Bahia.
    • Curitiba, PR, Brazil, 29 April-4 May
    • Sette, P.G.C., Maillard, P. Análise de textura de imagem de alta resolução para aprimorar a acurácia da classificação da mata atlântica no sul da Bahia. In Proceedings of the XV Brazilian Symposium on Remote Sensing-SBSR, Curitiba, PR, Brazil, 29 April-4 May 2011.
    • (2011) In Proceedings of the XV Brazilian Symposium on Remote Sensing-SBSR
    • Sette, P.G.C.1    Maillard, P.2
  • 95
    • 80054715708 scopus 로고    scopus 로고
    • Análise Multi-Temporal de Cenas do Satélite QuickBird Usando um novo Paradigma de Classificação de Imagens e Inferências Espaciais.
    • Master's Thesis, National Institute for Space Research, São José dos Campos
    • Araújo, E.H.G. Análise Multi-Temporal de Cenas do Satélite QuickBird Usando um novo Paradigma de Classificação de Imagens e Inferências Espaciais. Estudo de Caso: Belo Horizonte, MG. (INPE-13956-TDI/1062). Master's Thesis, National Institute for Space Research, São José dos Campos, 2006.
    • (2006) Estudo de Caso: Belo Horizonte, MG. (INPE-13956-TDI/1062).
    • Araújo, E.H.G.1
  • 96
    • 84897750419 scopus 로고    scopus 로고
    • Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery
    • Roslani, M.A., Mustapha, M.A., Lihan, T., Wan Juliana, W.A. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery. AIP Conf. Proc. 2013, 1571, 480.
    • (2013) AIP Conf. Proc. , vol.1571 , pp. 480
    • Roslani, M.A.1    Mustapha, M.A.2    Lihan, T.3    Wan Juliana, W.A.4
  • 97
    • 84934300451 scopus 로고    scopus 로고
    • Using spectral and textural features from RapidEye images to estimate age and structural parameters of Cerrado vegetation
    • Gomes, M.F., Maillard, P. Using spectral and textural features from RapidEye images to estimate age and structural parameters of Cerrado vegetation. Int. J. Remote Sens. 2015, 36, 3058-3076.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 3058-3076
    • Gomes, M.F.1    Maillard, P.2
  • 98
    • 84950112053 scopus 로고    scopus 로고
    • Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil
    • Schultz, B., Immitzer, M., Formaggio, A.R., Sanches, I.D.A., Luiz, A.J.B., Atzberger, C. Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482-14508.
    • (2015) Remote Sens. , vol.7 , pp. 14482-14508
    • Schultz, B.1    Immitzer, M.2    Formaggio, A.R.3    Sanches, I.D.A.4    Luiz, A.J.B.5    Atzberger, C.6
  • 100
    • 84858015958 scopus 로고    scopus 로고
    • Testing the Red Edge Channel for Improving Land-Use Classifications Based on High-Resolution Multi-Spectral Satellite Data
    • Schuster, C., Förster, M., Kleinschmit, B. Testing the Red Edge Channel for Improving Land-Use Classifications Based on High-Resolution Multi-Spectral Satellite Data. Int. J. Remote Sens. 2012, 33, 5583-5599.
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 5583-5599
    • Schuster, C.1    Förster, M.2    Kleinschmit, B.3
  • 101
    • 84878372022 scopus 로고    scopus 로고
    • Urban vegetation classification: Benefits of multitemporal RapidEye satellite data
    • Tigges, J., Lakes, T., Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66-75.
    • (2013) Remote Sens. Environ. , vol.136 , pp. 66-75
    • Tigges, J.1    Lakes, T.2    Hostert, P.3
  • 102
    • 84903143000 scopus 로고    scopus 로고
    • Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels
    • Adelabu, S., Mutanga, O., Adam, E. Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS J. Photogramm. Remote Sens. 2014, 95, 34-41.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.95 , pp. 34-41
    • Adelabu, S.1    Mutanga, O.2    Adam, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.