메뉴 건너뛰기




Volumn 6, Issue 2, 2017, Pages

Evaluation of feature selection methods for object-based land cover mapping of unmanned aerial vehicle imagery using random forest and support vector machine classifiers

Author keywords

CFS; Classification; Feature selection; High resolution image; Object based image analysis (OBIA); Random forest; Support vector machines; SVM RFE

Indexed keywords


EID: 85014908663     PISSN: None     EISSN: 22209964     Source Type: Journal    
DOI: 10.3390/ijgi6020051     Document Type: Article
Times cited : (185)

References (56)
  • 2
    • 84856742245 scopus 로고    scopus 로고
    • Machine learning comparison between worldview-2 and quickbird-2-simulated imagery regarding object-based urban land cover classification
    • [CrossRef]
    • Novack, T.; Esch, T.; Kux, H.; Stilla, U. Machine learning comparison between worldview-2 and quickbird-2-simulated imagery regarding object-based urban land cover classification. Remote Sens. 2011, 3, 2263-2282. [CrossRef]
    • (2011) Remote Sens. , vol.3 , pp. 2263-2282
    • Novack, T.1    Esch, T.2    Kux, H.3    Stilla, U.4
  • 3
    • 84857385727 scopus 로고    scopus 로고
    • Oil spill feature selection and classification using decision tree forest on SAR image data
    • [CrossRef]
    • Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135-143. [CrossRef]
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.68 , pp. 135-143
    • Topouzelis, K.1    Psyllos, A.2
  • 4
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • [CrossRef]
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790. [CrossRef]
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 5
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • [CrossRef]
    • Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297-2307. [CrossRef]
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 6
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • [CrossRef]
    • Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11-28. [CrossRef]
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 7
    • 84864510265 scopus 로고    scopus 로고
    • A comparison of three feature selection methods for object-based classification of sub-decimeter resolution ultracam-l imagery
    • [CrossRef]
    • Laliberte, A.S.; Browning, D.; Rango, A. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution ultracam-l imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 15, 70-78. [CrossRef]
    • (2012) Int. J. Appl. Earth Obs. Geoinf. , vol.15 , pp. 70-78
    • Laliberte, A.S.1    Browning, D.2    Rango, A.3
  • 9
    • 84922357427 scopus 로고    scopus 로고
    • Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery
    • [CrossRef]
    • Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14-27. [CrossRef]
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.102 , pp. 14-27
    • Ma, L.1    Cheng, L.2    Li, M.3    Liu, Y.4    Ma, X.5
  • 10
    • 84856982478 scopus 로고    scopus 로고
    • Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests
    • [CrossRef]
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. Int. J. Remote Sens. 2012, 33, 4502-4526. [CrossRef]
    • (2012) Int. J. Remote Sens. , vol.33 , pp. 4502-4526
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 11
    • 79960743609 scopus 로고    scopus 로고
    • Object-oriented mapping of landslides using random forests
    • [CrossRef]
    • Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using random forests. Remote Sens. Environ. 2011, 115, 2564-2577. [CrossRef]
    • (2011) Remote Sens. Environ. , vol.115 , pp. 2564-2577
    • Stumpf, A.1    Kerle, N.2
  • 12
    • 84897879307 scopus 로고    scopus 로고
    • Object-oriented mapping of urban trees using random forest classifiers
    • [CrossRef]
    • Puissant, A.; Rougier, S.; Stumpf, A. Object-oriented mapping of urban trees using random forest classifiers. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 235-245. [CrossRef]
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 235-245
    • Puissant, A.1    Rougier, S.2    Stumpf, A.3
  • 14
    • 33645809333 scopus 로고    scopus 로고
    • Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters
    • [CrossRef]
    • Chubey, M.S.; Franklin, S.E.; Wulder, M.A. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogramm. Eng. Remote Sens. 2006, 72, 383-394. [CrossRef]
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , pp. 383-394
    • Chubey, M.S.1    Franklin, S.E.2    Wulder, M.A.3
  • 15
    • 61349099437 scopus 로고    scopus 로고
    • Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery
    • [CrossRef]
    • Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761-770. [CrossRef]
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , pp. 761-770
    • Laliberte, A.S.1    Rango, A.2
  • 16
    • 84861335868 scopus 로고    scopus 로고
    • Object based image analysis and data mining applied to a remotely sensed landsat time-series to map sugarcane over large areas
    • [CrossRef]
    • Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object based image analysis and data mining applied to a remotely sensed landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553-562. [CrossRef]
    • (2012) Remote Sens. Environ. , vol.123 , pp. 553-562
    • Vieira, M.A.1    Formaggio, A.R.2    Rennó, C.D.3    Atzberger, C.4    Aguiar, D.A.5    Mello, M.P.6
  • 17
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • [CrossRef]
    • Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301-1316. [CrossRef]
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1301-1316
    • Peña-Barragán, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 18
    • 33745615125 scopus 로고    scopus 로고
    • Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
    • [CrossRef]
    • Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens. 2006, 72, 799-811. [CrossRef]
    • (2006) Photogramm. Eng. Remote Sens. , vol.72 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 19
    • 85017406334 scopus 로고    scopus 로고
    • A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments
    • [CrossRef]
    • Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87-98. [CrossRef]
    • (2016) Int. J. Appl. Earth Obs. Geoinf. , vol.49 , pp. 87-98
    • Li, M.1    Ma, L.2    Blaschke, T.3    Cheng, L.4    Tiede, D.5
  • 20
    • 33747086525 scopus 로고    scopus 로고
    • Some issues in the classification of dais hyperspectral data
    • [CrossRef]
    • Pal, M.; Mather, P. Some issues in the classification of dais hyperspectral data. Int. J. Remote Sens. 2006, 27, 2895-2916. [CrossRef]
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 2895-2916
    • Pal, M.1    Mather, P.2
  • 21
    • 34548435161 scopus 로고    scopus 로고
    • Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in flanders
    • [CrossRef]
    • Van Coillie, F.M.; Verbeke, L.P.; De Wulf, R.R. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in flanders, Belgium. Remote Sens. Environ. 2007, 110, 476-487. [CrossRef]
    • (2007) Belgium. Remote Sens. Environ. , vol.110 , pp. 476-487
    • Van Coillie, F.M.1    Verbeke, L.P.2    De Wulf, R.R.3
  • 23
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • [CrossRef]
    • Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389-422. [CrossRef]
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 24
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • [CrossRef]
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272. [CrossRef]
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 25
    • 84897789449 scopus 로고    scopus 로고
    • Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data
    • [CrossRef]
    • Ma, L.; Cheng, L.; Han, W.; Zhong, L.; Li, M. Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data. J. Appl. Remote Sens. 2014, 8, 1-25. [CrossRef]
    • (2014) J. Appl. Remote Sens. , vol.8 , pp. 1-25
    • Ma, L.1    Cheng, L.2    Han, W.3    Zhong, L.4    Li, M.5
  • 26
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
    • Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 2013, 8, e77151.
    • (2013) PLoS ONE , vol.8 , pp. e77151
    • Peña, J.M.1    Torres-Sánchez, J.2    De Castro, A.I.3    Kelly, M.4    López-Granados, F.5
  • 28
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation
    • Strobl, J., Blaschke, T., Griesebner, G., Eds.; Herbert Wichmann Verlag: Berlin, Germany
    • Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale image segmentation. In Angewandte Geographische Informationsverarbeitung XII; Strobl, J., Blaschke, T., Griesebner, G., Eds.; Herbert Wichmann Verlag: Berlin, Germany, 2000; Volume 58, pp. 12-23.
    • (2000) Angewandte Geographische Informationsverarbeitung XII , vol.58 , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 33
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relieff and rrelieff
    • [CrossRef]
    • Robnik-Sikonja, M.; Kononenko, I. Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 2003, 53, 23-69. [CrossRef]
    • (2003) Mach. Learn. , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 34
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • [CrossRef]
    • Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recogn. 2011, 44, 330-349. [CrossRef]
    • (2011) Pattern Recogn. , vol.44 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 35
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • [CrossRef]
    • Hall, M.A.; Holmes, G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 2003, 15, 1437-1447. [CrossRef]
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 36
  • 37
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • [CrossRef]
    • Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273-324. [CrossRef]
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 38
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • [CrossRef]
    • Maldonado, S.; Weber, R. A wrapper method for feature selection using support vector machines. Inf. Sci. 2009, 179, 2208-2217. [CrossRef]
    • (2009) Inf. Sci. , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 39
    • 75149176440 scopus 로고    scopus 로고
    • Use of wrapper algorithms coupled with a random forests classifier for variable selection in large-scale genomic association studies
    • [CrossRef] [PubMed]
    • Rodin, A.S.; Litvinenko, A.; Klos, K.; Morrison, A.C.; Woodage, T.; Coresh, J.; Boerwinkle, E. Use of wrapper algorithms coupled with a random forests classifier for variable selection in large-scale genomic association studies. J. Comput. Biol. 2009, 16, 1705-1718. [CrossRef] [PubMed]
    • (2009) J. Comput. Biol. , vol.16 , pp. 1705-1718
    • Rodin, A.S.1    Litvinenko, A.2    Klos, K.3    Morrison, A.C.4    Woodage, T.5    Coresh, J.6    Boerwinkle, E.7
  • 40
    • 0003120218 scopus 로고    scopus 로고
    • 12 fast training of support vector machines using sequential minimal optimization
    • MIT Press: Cambridge, MA, USA
    • Platt, J.C. 12 fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999; pp. 185-208.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 41
    • 84897470278 scopus 로고    scopus 로고
    • Area-based and location-based validation of classified image objects
    • [CrossRef]
    • Whiteside, T.G.; Maier, S.W.; Boggs, G.S. Area-based and location-based validation of classified image objects. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 117-130. [CrossRef]
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.28 , pp. 117-130
    • Whiteside, T.G.1    Maier, S.W.2    Boggs, G.S.3
  • 42
    • 84890127726 scopus 로고    scopus 로고
    • Optimization of object-based image analysis with random forests for land cover mapping
    • [CrossRef]
    • Stefanski, J.; Mack, B.; Waske, B. Optimization of object-based image analysis with random forests for land cover mapping. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2013, 6, 2492-2504. [CrossRef]
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , pp. 2492-2504
    • Stefanski, J.1    Mack, B.2    Waske, B.3
  • 43
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • [CrossRef]
    • Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222. [CrossRef]
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 45
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • [CrossRef]
    • Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132. [CrossRef]
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 46
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • [CrossRef]
    • Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247-259. [CrossRef]
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 48
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and cart algorithms for the land-cover classification using limited training data points
    • [CrossRef]
    • Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and cart algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78-87. [CrossRef]
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 49
    • 84897586103 scopus 로고    scopus 로고
    • A comparison of selected classification algorithms for mapping bamboo patches in lower gangetic plains using very high resolution worldview 2 imagery
    • [CrossRef]
    • Ghosh, A.; Joshi, P. A comparison of selected classification algorithms for mapping bamboo patches in lower gangetic plains using very high resolution worldview 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 298-311. [CrossRef]
    • (2014) Int. J. Appl. Earth Obs. Geoinf. , vol.26 , pp. 298-311
    • Ghosh, A.1    Joshi, P.2
  • 50
    • 84908097106 scopus 로고    scopus 로고
    • Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass
    • [CrossRef]
    • Fassnacht, F.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102-114. [CrossRef]
    • (2014) Remote Sens. Environ. , vol.154 , pp. 102-114
    • Fassnacht, F.1    Hartig, F.2    Latifi, H.3    Berger, C.4    Hernández, J.5    Corvalán, P.6    Koch, B.7
  • 51
    • 84898072545 scopus 로고    scopus 로고
    • Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images
    • [CrossRef]
    • Wieland, M.; Pittore, M. Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sens. 2014, 6, 2912-2939. [CrossRef]
    • (2014) Remote Sens. , vol.6 , pp. 2912-2939
    • Wieland, M.1    Pittore, M.2
  • 52
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • [CrossRef]
    • Chan, J.C.-W.; Paelinckx, D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999-3011. [CrossRef]
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 53
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • [CrossRef]
    • Huang, X.; Zhang, L. An svm ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257-272. [CrossRef]
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 54
    • 85028158057 scopus 로고    scopus 로고
    • Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images
    • [CrossRef]
    • Cheng, G.; Han, J.; Guo, L.; Liu, Z.; Bu, S.; Ren, J. Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4238-4249. [CrossRef]
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 4238-4249
    • Cheng, G.1    Han, J.2    Guo, L.3    Liu, Z.4    Bu, S.5    Ren, J.6
  • 55
    • 84945911834 scopus 로고    scopus 로고
    • Response to johnson ba scale issues related to the accuracy assessment of land use/land cover maps produced using multi-resolution data: Comments on "the improvement of land cover classification by thermal remote sensing"
    • [CrossRef]
    • Sun, L.; Schulz, K. Response to johnson ba scale issues related to the accuracy assessment of land use/land cover maps produced using multi-resolution data: Comments on "the improvement of land cover classification by thermal remote sensing". Remote Sens. 2015, 7, 13440-13447. [CrossRef]
    • (2015) Remote Sens. , vol.7 , pp. 13440-13447
    • Sun, L.1    Schulz, K.2
  • 56
    • 84945962952 scopus 로고    scopus 로고
    • Scale issues related to the accuracy assessment of land use/land cover maps produced using multi-resolution data: Comments on "the improvement of land cover classification by thermal remote sensing"
    • [CrossRef]
    • Johnson, B.A. Scale issues related to the accuracy assessment of land use/land cover maps produced using multi-resolution data: Comments on "the improvement of land cover classification by thermal remote sensing". Remote Sens. 2015, 7, 13436-13439. [CrossRef]
    • (2015) Remote Sens. , vol.7 , pp. 13436-13439
    • Johnson, B.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.