메뉴 건너뛰기




Volumn 26, Issue 1, 2014, Pages 49-63

A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

Author keywords

Hyperspectral; nDSM; Random forest (RF); Scale; Support vector machines (SVM); Tree species classificationa

Indexed keywords

IMAGE ANALYSIS; IMAGE CLASSIFICATION; LIDAR; MAPPING; PIXEL; RANDOM WALK METHOD; REMOTE SENSING; SATELLITE SENSOR; SENSOR; SPATIAL ANALYSIS; SPATIAL DATA; SPATIAL RESOLUTION; SPECTRAL ANALYSIS; TREE; VEGETATION INDEX;

EID: 84897585667     PISSN: 15698432     EISSN: 1872826X     Source Type: Journal    
DOI: 10.1016/j.jag.2013.05.017     Document Type: Article
Times cited : (305)

References (71)
  • 2
    • 80051722297 scopus 로고    scopus 로고
    • Using Lidar-derived vegetationprofiles to predict time since fire in an oak scrub landscape in East-CentralFlorida
    • Angelo, J.J., Duncan, B.W., Weishampel, J.F., 2010. Using Lidar-derived vegetationprofiles to predict time since fire in an oak scrub landscape in East-CentralFlorida. Remote Sensing 2, 514-525.
    • (2010) Remote Sensing , vol.2 , pp. 514-525
    • Angelo, J.J.1    Duncan, B.W.2    Weishampel, J.F.3
  • 5
    • 0002911196 scopus 로고    scopus 로고
    • Multiscale nature of spatial data in scaling up environmental models
    • Quattrochi, D.A., Goodchild, M.F. (Eds.), Lewis Publishers/CRC Press.
    • Bian, L., 2005. Multiscale nature of spatial data in scaling up environmental models.In: Quattrochi, D.A., Goodchild, M.F. (Eds.), Scale in Remote Sensing and GIS.Lewis Publishers/CRC Press.
    • (2005) Scale in Remote Sensing and GIS
    • Bian, L.1
  • 6
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small samplemicroarray classification?
    • Braga-Neto, U.M., Dougherty, E.R., 2004. Is cross-validation valid for small samplemicroarray classification? Bioinformatics 20, 374-380.
    • (2004) Bioinformatics , vol.20 , pp. 374-380
    • Braga-Neto, U.M.1    Dougherty, E.R.2
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman, L., 2001. Random forest. Machine Learning 45 (1), 5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0041382385 scopus 로고    scopus 로고
    • Breiman, L., Cutler, A., 2004. Random Forests. Available on http://statwww.berkeley.edu/users/breiman/RandomForests/cc home.htm
    • (2004) Random Forests
    • Breiman, L.1    Cutler, A.2
  • 11
    • 0003147397 scopus 로고    scopus 로고
    • Understanding the scale and resolution effects in remotesensing and GIS
    • Quattrochi, D.A., Goodchild, M.F. (Eds.), Lewis Publishers/CRC Press.
    • Cao, C., Lam, N.S.-N., 2005. Understanding the scale and resolution effects in remotesensing and GIS. In: Quattrochi, D.A., Goodchild, M.F. (Eds.), Scale in RemoteSensing and GIS. Lewis Publishers/CRC Press.
    • (2005) Scale in RemoteSensing and GIS
    • Cao, C.1    Lam, N.S.-N.2
  • 12
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • Chen, C.H., Ho, P.G.P., 2008. Statistical pattern recognition in remote sensing. PatternRecognition 41, 2731-2741.
    • (2008) PatternRecognition , vol.41 , pp. 2731-2741
    • Chen, C.H.1    Ho, P.G.P.2
  • 13
    • 78049251348 scopus 로고    scopus 로고
    • Improvingdiscrimination of savanna tree species through a multiple-endmember spectralangle mapper approach: canopy-level analysis
    • Cho, M.A., Debba, P., Mathieu, R., Naidoo, L., Van Aardt, J., Asner, G.P., 2010. Improvingdiscrimination of savanna tree species through a multiple-endmember spectralangle mapper approach: canopy-level analysis. IEEE Transactions on Geoscienceand Remote Sensing 48 (2), 4133-4142.
    • (2010) IEEE Transactions on Geoscienceand Remote Sensing , vol.48 , Issue.2 , pp. 4133-4142
    • Cho, M.A.1    Debba, P.2    Mathieu, R.3    Naidoo, L.4    Van Aardt, J.5    Asner, G.P.6
  • 15
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropicalrain forest tree species at leaf to crown scales
    • Clark, M.L., Roberts, D.A., Clark, D.B., 2005. Hyperspectral discrimination of tropicalrain forest tree species at leaf to crown scales. Remote Sensing of Environment96, 375-398.
    • (2005) Remote Sensing of Environment , vol.96 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 17
    • 84870853911 scopus 로고    scopus 로고
    • Mapping savanna treespecies at ecosystem scales using support vector machine classification andBRDF correction on airborne hyperspectral and LiDAR data
    • Colgan, M.S., Baldeck, C.A., Féret, J-B., Asner, G.P., 2012. Mapping savanna treespecies at ecosystem scales using support vector machine classification andBRDF correction on airborne hyperspectral and LiDAR data. Remote Sensing 4, 3462-3480.
    • (2012) Remote Sensing , vol.4 , pp. 3462-3480
    • Colgan, M.S.1    Baldeck, C.A.2    Féret, J.-B.3    Asner, G.P.4
  • 18
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C., Vapnik, V., 1995. Support vector networks. Machine Learning 20 (3),273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 53349084895 scopus 로고    scopus 로고
    • Fusion of hyperspectral and LIDARremote sensing data for the classification of complex forest areas
    • Dalponte, M., Bruzzone, L., Gianelle, D., 2008. Fusion of hyperspectral and LIDARremote sensing data for the classification of complex forest areas. IEEE Transactions on Geoscience and Remote Sensing 46 (5), 1416-1427.
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1416-1427
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 20
    • 70349172947 scopus 로고    scopus 로고
    • The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forestareas
    • Dalponte, M., Bruzzone, L., Vescovo, L., Gianelle, D., 2009. The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forestareas. Remote Sensing of Environment 115, 2345-2355.
    • (2009) Remote Sensing of Environment , vol.115 , pp. 2345-2355
    • Dalponte, M.1    Bruzzone, L.2    Vescovo, L.3    Gianelle, D.4
  • 21
    • 84859928062 scopus 로고    scopus 로고
    • Tree species classification in theSouthern Alps based on the fusion of very high geometrical resolution multi-spectral/hyperspectral images and LiDAR data
    • Dalponte, M., Bruzzone, L., Gianelle, D., 2012. Tree species classification in theSouthern Alps based on the fusion of very high geometrical resolution multi-spectral/hyperspectral images and LiDAR data. Remote Sensing of Environment123, 258-270.
    • (2012) Remote Sensing of Environment , vol.123 , pp. 258-270
    • Dalponte, M.1    Bruzzone, L.2    Gianelle, D.3
  • 23
    • 34548431766 scopus 로고    scopus 로고
    • Remote sensing of speciesmixtures in conifer plantations using LiDAR height and intensity data
    • Donoghue, D.N.M., Watt, P.J., Cox, N.J., Wilson, J., 2007. Remote sensing of speciesmixtures in conifer plantations using LiDAR height and intensity data. RemoteSensing of Environment 110 (4), 509-522.
    • (2007) RemoteSensing of Environment , vol.110 , Issue.4 , pp. 509-522
    • Donoghue, D.N.M.1    Watt, P.J.2    Cox, N.J.3    Wilson, J.4
  • 25
    • 84897903786 scopus 로고    scopus 로고
    • ENVI (The Environment for Visualizing Images), V.4.7. Exelis Visual Information Solutions. ENVI, Boulder, Colorado.
    • ENVI (The Environment for Visualizing Images), 2010. V.4.7. Exelis Visual Information Solutions. ENVI, Boulder, Colorado.
    • (2010)
  • 26
    • 84897878779 scopus 로고    scopus 로고
    • Automatic forest area extraction fromimaging spectroscopy data using an extended NDVI
    • Edinburgh, Scotland.
    • Fassnacht, F.E., Weinacker, H., Koch, B., 2011. Automatic forest area extraction fromimaging spectroscopy data using an extended NDVI. In: 7th EARSeL Workshopon Imaging Spectroscopy, Edinburgh, Scotland.
    • (2011) 7th EARSeL Workshopon Imaging Spectroscopy
    • Fassnacht, F.E.1    Weinacker, H.2    Koch, B.3
  • 27
    • 84872818638 scopus 로고    scopus 로고
    • An angular vegetation index for imagingspectroscopy data-preliminary results on forest damage detection in the Bavarian National Park, Germany
    • Fassnacht, F.E., Latifi, H., Koch, B., 2012. An angular vegetation index for imagingspectroscopy data-preliminary results on forest damage detection in the Bavarian National Park, Germany. International Journal of Applied Earth Observationand Geoinformation 19, 308-321.
    • (2012) International Journal of Applied Earth Observationand Geoinformation , vol.19 , pp. 308-321
    • Fassnacht, F.E.1    Latifi, H.2    Koch, B.3
  • 29
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparisons: evaluating the statistical significance of differences in classification accuracy
    • Foody, G.M., 2004. Thematic map comparisons: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineeringand Remote Sensing 70 (5), 627-633.
    • (2004) Photogrammetric Engineeringand Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 31
    • 0023854011 scopus 로고
    • A transformation for orderingmultispectral data in terms of image quality with implications for noise removal
    • Green, A.A., Berman, M., Switzer, P., Craig, M.D., 1988. A transformation for orderingmultispectral data in terms of image quality with implications for noise removal.IEEE Transactions on Geoscience and Remote Sensing 26 (1), 65-74.
    • (1988) IEEE Transactions on Geoscience and Remote Sensing , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 33
    • 84864524799 scopus 로고    scopus 로고
    • Investigating multiple data sources for tree speciesclassification in temperate forest and use for single tree delineation
    • Heinzel, J., Koch, B., 2012. Investigating multiple data sources for tree speciesclassification in temperate forest and use for single tree delineation. International Journal of Applied Earth Observation and Geoinformation 18,101-110.
    • (2012) International Journal of Applied Earth Observation and Geoinformation , vol.18 , pp. 101-110
    • Heinzel, J.1    Koch, B.2
  • 34
    • 84900805384 scopus 로고    scopus 로고
    • Raster: Geographic Data Analysis and Modeling
    • Hijmans, R.J., Etten, J.v., 2012. Raster: Geographic Data Analysis and Modeling. Rpackage version 2. 0-41, Available on http://CRAN.R-project.org/package=raster
    • (2012) Rpackage version 2. 0-41
    • Hijmans, R.J.1    Etten, J.v.2
  • 37
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F., 1968. On the mean accuracy of statistical pattern recognizers. IEEETransactions on Information Theory 14 (1), 55-63.
    • (1968) IEEETransactions on Information Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 38
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectraland LiDAR data for species distribution mapping in the coastal Pacific Northwest,Canada
    • Jones, T., Coops, N.C., Sharma, T., 2010. Assessing the utility of airborne hyperspectraland LiDAR data for species distribution mapping in the coastal Pacific Northwest,Canada. Remote Sensing of Environment 114, 2841-2852.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 2841-2852
    • Jones, T.1    Coops, N.C.2    Sharma, T.3
  • 40
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in r using the caret package
    • Kuhn, M., 2008. Building predictive models in r using the caret package. Journal ofStatistical Software 28 (5), 1-26.
    • (2008) Journal ofStatistical Software , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 41
    • 84881423741 scopus 로고    scopus 로고
    • Caret: Classification and Regression Training
    • (contributionsfrom Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardtand Tony Cooper).
    • Kuhn, M., 2012. Caret: Classification and Regression Training. R package version5. 15-052, Available on http://CRAN.R-project.org/package=caret (contributionsfrom Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardtand Tony Cooper).
    • (2012) R package version5. 15-052
    • Kuhn, M.1
  • 44
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw, A., Wiener, M., 2002. Classification and regression by random forest. R News2, 18-22.
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 47
    • 49549127398 scopus 로고
    • The use of remote sensing techniques to identify potential naturalareas in Oregon
    • Mairs, J.W., 1976. The use of remote sensing techniques to identify potential naturalareas in Oregon. Biological Conservation 9 (4), 259-266.
    • (1976) Biological Conservation , vol.9 , Issue.4 , pp. 259-266
    • Mairs, J.W.1
  • 48
    • 0028486366 scopus 로고
    • Remote sensing and the measurement of geographical entities in a forested environment. 1.The scale and spatialaggregation problem
    • Marceau, D.J., Howarth, P.J., Gratton, D.J., 1994a. Remote sensing and the measurement of geographical entities in a forested environment. 1.The scale and spatialaggregation problem. Remote Sensing of Environment 49 (103-114).
    • (1994) Remote Sensing of Environment , vol.49 , pp. 103-114
    • Marceau, D.J.1    Howarth, P.J.2    Gratton, D.J.3
  • 49
    • 0028486366 scopus 로고
    • Remote sensing and themeasurement of geographical entities in a forested environment. 2. The optimalspatial resolution
    • Marceau, D.J., Gratton, D.J., Fournier, R.A., Fortin, J.-P., 1994b. Remote sensing and themeasurement of geographical entities in a forested environment. 2. The optimalspatial resolution. Remote Sensing of Environment 49, 105-117.
    • (1994) Remote Sensing of Environment , vol.49 , pp. 105-117
    • Marceau, D.J.1    Gratton, D.J.2    Fournier, R.A.3    Fortin, J.-P.4
  • 50
    • 0032157733 scopus 로고    scopus 로고
    • Determining forestspecies composition using high spectral resolution remote sensing data
    • Martin, M.E., Newman, S.D., Aber, J.D., Congalton, R.G., 1998. Determining forestspecies composition using high spectral resolution remote sensing data. RemoteSensing of Environment 65, 249-254.
    • (1998) RemoteSensing of Environment , vol.65 , pp. 249-254
    • Martin, M.E.1    Newman, S.D.2    Aber, J.D.3    Congalton, R.G.4
  • 51
    • 0000596361 scopus 로고
    • Note on the sampling error of the difference between correlatedproportions or percentages
    • Mcnemar, Q., 1947. Note on the sampling error of the difference between correlatedproportions or percentages. Psychometrika, 153-157.
    • (1947) Psychometrika , pp. 153-157
    • Mcnemar, Q.1
  • 52
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing imageswith support vector machines
    • Melgani, F., Bruzzone, L., 2004. Classification of hyperspectral remote sensing imageswith support vector machines. IEEE Transactions on Geoscience and RemoteSensing 42 (8), 1778-1790.
    • (2004) IEEE Transactions on Geoscience and RemoteSensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 54
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna treespecies, in the Greater Kruger National Park region, by integrating hyperspectraland LiDAR data in a random forest data mining environment
    • Naidoo, L., Cho, M.A., Mathieu, R., Asner, G., 2012. Classification of savanna treespecies, in the Greater Kruger National Park region, by integrating hyperspectraland LiDAR data in a random forest data mining environment. ISPRS Journal ofPhotogrammetry and Remote Sensing 69, 167-179.
    • (2012) ISPRS Journal ofPhotogrammetry and Remote Sensing , vol.69 , pp. 167-179
    • Naidoo, L.1    Cho, M.A.2    Mathieu, R.3    Asner, G.4
  • 55
    • 79957751533 scopus 로고    scopus 로고
    • Optimising the use of hyperspectral andLiDAR data for mapping reedbed habitats
    • Onojeghuo, A.O., Blackburn, G.A., 2011. Optimising the use of hyperspectral andLiDAR data for mapping reedbed habitats. Remote Sensing of Environment 115, 2025-2034.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 2025-2034
    • Onojeghuo, A.O.1    Blackburn, G.A.2
  • 56
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., 2005. Random forest classifier for remote sensing classification. InternationalJournal of Remote Sensing 26 (1).
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1
    • Pal, M.1
  • 57
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remotesensing
    • Pal, M., Mather, M., 2005. Support vector machines for classification in remotesensing. International Journal of Remote Sensing 26 (5), 1007-1011.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.5 , pp. 1007-1011
    • Pal, M.1    Mather, M.2
  • 58
    • 85030967888 scopus 로고    scopus 로고
    • R Core Team, R: A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Core Team, 2012. R: A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0,http://www.R-project.org/
    • (2012)
  • 61
    • 84870001381 scopus 로고    scopus 로고
    • Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-levelspecies classification and herbaceous biomass modeling in savanna ecosystems
    • Sarrazin, D., Van Aardt, J.A., Asner, G.P., Mcglinchy, J., Messinger, D.W., Wu, J., 2011.Fusing small-footprint waveform LiDAR and hyperspectral data for canopy-levelspecies classification and herbaceous biomass modeling in savanna ecosystems.Canadian Journal of Remote Sensing 37 (6), 653-665.
    • (2011) Canadian Journal of Remote Sensing , vol.37 , Issue.6 , pp. 653-665
    • Sarrazin, D.1    Van Aardt, J.A.2    Asner, G.P.3    Mcglinchy, J.4    Messinger, D.W.5    Wu, J.6
  • 63
    • 2942528742 scopus 로고    scopus 로고
    • Using imagespectroscopy to study ecosystem processes and properties
    • Ustin, S.L., Roberts, D.A., Gamon, J.A., Asner, G.P., Green, R.O., 2004. Using imagespectroscopy to study ecosystem processes and properties. Bioscience 54,523-534.
    • (2004) Bioscience , vol.54 , pp. 523-534
    • Ustin, S.L.1    Roberts, D.A.2    Gamon, J.A.3    Asner, G.P.4    Green, R.O.5
  • 64
    • 34250875291 scopus 로고    scopus 로고
    • Examining pine spectral separability using hyper-spectral data from an airborne sensor: an extension of field-based results
    • vanAardt, J.A., Wynne, R.H., 2007. Examining pine spectral separability using hyper-spectral data from an airborne sensor: an extension of field-based results.International Journal of Remote Sensing 28 (2), 431-436.
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.2 , pp. 431-436
    • vanAardt, J.A.1    Wynne, R.H.2
  • 68
  • 71
    • 84862164250 scopus 로고    scopus 로고
    • Combining object-based texture measures with a neuralnetwork for vegetation mapping in the everglades from hyperspectral imagery
    • Zhang, C., Xie, Z., 2012. Combining object-based texture measures with a neuralnetwork for vegetation mapping in the everglades from hyperspectral imagery.Remote Sensing of Environment 124, 310-320.
    • (2012) Remote Sensing of Environment , vol.124 , pp. 310-320
    • Zhang, C.1    Xie, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.