메뉴 건너뛰기




Volumn 2, Issue 1, 2015, Pages 47-57

Functionalized scaffolds to enhance tissue regeneration

Author keywords

Antimicrobial coatings; Bioactive nanocomposites; Biomaterials; Bone tissue engineering; Electrically conductive polymers; Molecule releasing scaffolds; Scaffolds

Indexed keywords

ANILINE; ANTIBIOTIC AGENT; BIOMATERIAL; CATHELICIDIN ANTIMICROBIAL PEPTIDE LL 37; CHONDROITIN SULFATE; CHROMOGRANIN A; COLLAGEN; GELATIN; GLASS; HYDROXYAPATITE; IODINE; MACROGOL; MERCURY; MOLECULAR SCAFFOLD; NANOCOMPOSITE; POLY(3 HYDROXYBUTYRIC ACID); POLYCAPROLACTONE; POLYLACTIDE; POLYMER; QUATERNARY AMMONIUM DERIVATIVE; SILICON DIOXIDE; SILVER; TITANIUM DIOXIDE; TRIBUTYLTIN;

EID: 85026963215     PISSN: 20563418     EISSN: 20563426     Source Type: Journal    
DOI: 10.1093/rb/rbu016     Document Type: Review
Times cited : (110)

References (106)
  • 2
    • 0029007273 scopus 로고
    • Biomaterials in tissue engineering
    • Hubbell JA. Biomaterials in tissue engineering. Bio-Technology 1995;13:565-76.
    • (1995) Bio-Technology , vol.13 , pp. 565-576
    • Hubbell, J.A.1
  • 3
    • 1942449724 scopus 로고    scopus 로고
    • Polymeric scaffolds for bone tissue engineering
    • Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477-86.
    • (2004) Ann Biomed Eng , vol.32 , pp. 477-486
    • Liu, X.H.1    Ma, P.X.2
  • 4
    • 37049029660 scopus 로고    scopus 로고
    • Biomimetic materials for tissue engineering
    • Ma PX. Biomimetic materials for tissue engineering. Adv Drug Delivery Rev 2008;60:184-98.
    • (2008) Adv Drug Delivery Rev , vol.60 , pp. 184-198
    • Ma, P.X.1
  • 5
    • 84899413081 scopus 로고    scopus 로고
    • Synthetic biodegradable functional polymers for tissue engineering-a brief review
    • Guo BL, Ma PX. Synthetic biodegradable functional polymers for tissue engineering-a brief review. Sci China Chem 2014;57:490-500.
    • (2014) Sci China Chem , vol.57 , pp. 490-500
    • Guo, B.L.1    Ma, P.X.2
  • 6
    • 0042562089 scopus 로고    scopus 로고
    • Biomimetic materials for tissue engineering
    • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353-64.
    • (2003) Biomaterials , vol.24 , pp. 4353-4364
    • Shin, H.1    Jo, S.2    Mikos, A.G.3
  • 7
    • 34547584454 scopus 로고    scopus 로고
    • Conducting polymers in biomedical engineering
    • Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci 2007;32:876-921.
    • (2007) Prog Polym Sci , vol.32 , pp. 876-921
    • Guimard, N.K.1    Gomez, N.2    Schmidt, C.E.3
  • 8
    • 84899889621 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds for bone tissue engineering
    • Wu SL, Liu XM, Yeung KWK et al. Biomimetic porous scaffolds for bone tissue engineering. Mat Sci Eng R 2014;80:1-36.
    • (2014) Mat Sci Eng R , vol.80 , pp. 1-36
    • Wu, S.L.1    Liu, X.M.2    Yeung, K.W.K.3
  • 9
    • 84885018649 scopus 로고    scopus 로고
    • Synthetic biopolymer nanocomposites for tissue engineering scaffolds
    • Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 2013;38:1487-503.
    • (2013) Prog Polym Sci , vol.38 , pp. 1487-1503
    • Okamoto, M.1    John, B.2
  • 10
    • 84889858025 scopus 로고    scopus 로고
    • Mimicking the nanostructure of bone matrix to regenerate bone
    • Kane R, Ma PX. Mimicking the nanostructure of bone matrix to regenerate bone. Mater Today 2013;16:418-23.
    • (2013) Mater Today , vol.16 , pp. 418-423
    • Kane, R.1    Ma, P.X.2
  • 11
    • 84865302659 scopus 로고    scopus 로고
    • Nanofiber-based delivery of bioactive agents and stem cells to bone sites
    • Zhang ZP, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Delivery Rev 2013;64:1129-41.
    • (2013) Adv Drug Delivery Rev , vol.64 , pp. 1129-1141
    • Zhang, Z.P.1    Hu, J.2    Ma, P.X.3
  • 12
    • 78751546515 scopus 로고    scopus 로고
    • Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation
    • Wong LJ, Kavallaris M, Bulmus V. Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation. Polym Chem 2011;2:385-93.
    • (2011) Polym Chem , vol.2 , pp. 385-393
    • Wong, L.J.1    Kavallaris, M.2    Bulmus, V.3
  • 13
    • 84861596830 scopus 로고    scopus 로고
    • Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels
    • He SH, Xia T, Wang H et al. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater 2012;8:2659-69.
    • (2012) Acta Biomater , vol.8 , pp. 2659-2669
    • He, S.H.1    Xia, T.2    Wang, H.3
  • 14
    • 12344263658 scopus 로고    scopus 로고
    • Infections associated with medical devices-pathogenesis, management and prophylaxis
    • von Eiff C, Jansen B, Kohnen W et al. Infections associated with medical devices-pathogenesis, management and prophylaxis. Drugs 2005;65:179-214.
    • (2005) Drugs , vol.65 , pp. 179-214
    • von Eiff, C.1    Jansen, B.2    Kohnen, W.3
  • 15
    • 33747812542 scopus 로고    scopus 로고
    • Reducing implant-related infections: active release strategies
    • Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35:780-9.
    • (2006) Chem Soc Rev , vol.35 , pp. 780-789
    • Hetrick, E.M.1    Schoenfisch, M.H.2
  • 16
    • 34249895273 scopus 로고    scopus 로고
    • Antibacterial polypropylene via surface-initiated atom transfer radical polymerization
    • Huang JY, Murata H, Koepsel RR et al. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 2007;8:1396-9.
    • (2007) Biomacromolecules , vol.8 , pp. 1396-1399
    • Huang, J.Y.1    Murata, H.2    Koepsel, R.R.3
  • 17
    • 85012844566 scopus 로고    scopus 로고
    • Reduction in central line-associated bloodstream infections among patients in intensive care units-Pennsylvania
    • April 2001-March 2005 [Reprinted from MMWR, Vol. 54, pp. 1013-6, 2005)
    • Muto C, Herbert C, Harrison E et al. Reduction in central line-associated bloodstream infections among patients in intensive care units-Pennsylvania, April 2001-March 2005 [Reprinted from MMWR, Vol. 54, pp. 1013-6, 2005). JAMA 2006;295:269-70.
    • (2006) JAMA , vol.295 , pp. 269-270
    • Muto, C.1    Herbert, C.2    Harrison, E.3
  • 19
    • 84863645119 scopus 로고    scopus 로고
    • A single component conducting polymer hydrogel as a scaffold for tissue engineering
    • Mawad D, Stewart E, Officer DL et al. A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater 2012;22:2692-9.
    • (2012) Adv Funct Mater , vol.22 , pp. 2692-2699
    • Mawad, D.1    Stewart, E.2    Officer, D.L.3
  • 20
    • 75249089392 scopus 로고    scopus 로고
    • Electroconductive hydrogels: synthesis, characterization and biomedical applications
    • Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010;31:2701-16.
    • (2010) Biomaterials , vol.31 , pp. 2701-2716
    • Guiseppi-Elie, A.1
  • 21
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24:4337-51.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 22
    • 84863034486 scopus 로고    scopus 로고
    • Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
    • Liu YD, Hu J, Zhuang XL et al. Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol Biosci 2011;12:241-50.
    • (2011) Macromol Biosci , vol.12 , pp. 241-250
    • Liu, Y.D.1    Hu, J.2    Zhuang, X.L.3
  • 23
    • 84882264696 scopus 로고    scopus 로고
    • Biodegradable and electrically conducting polymers for biomedical applications
    • Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 2013;38:1263-86.
    • (2013) Prog Polym Sci , vol.38 , pp. 1263-1286
    • Guo, B.L.1    Glavas, L.2    Albertsson, A.C.3
  • 24
    • 79953061850 scopus 로고    scopus 로고
    • Versatile functionalization of polyester hydrogels with electroactive aniline oligomers
    • Guo BL, Finne-Wistrand A, Albertsson AC. Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. J Polym Sci A Polym Chem 2011;49:2097-105.
    • (2011) J Polym Sci A Polym Chem , vol.49 , pp. 2097-2105
    • Guo, B.L.1    Finne-Wistrand, A.2    Albertsson, A.C.3
  • 25
    • 79952159589 scopus 로고    scopus 로고
    • Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior
    • Guo BL, Finne-Wistrand A, Albertsson AC. Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem Mater 2011;23:1254-62.
    • (2011) Chem Mater , vol.23 , pp. 1254-1262
    • Guo, B.L.1    Finne-Wistrand, A.2    Albertsson, A.C.3
  • 26
    • 79960227637 scopus 로고    scopus 로고
    • Facile synthesis of degradable and electrically conductive polysaccharide hydrogels
    • Guo BL, Finne-Wistrand A, Albertsson AC. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules 2011;12:2601-9.
    • (2011) Biomacromolecules , vol.12 , pp. 2601-2609
    • Guo, B.L.1    Finne-Wistrand, A.2    Albertsson, A.C.3
  • 27
    • 84903989508 scopus 로고    scopus 로고
    • Non-cytotoxic conductive carboxymethylchitosan/ aniline pentamer hydrogels
    • Zhang L, Li Y, Li L et al. Non-cytotoxic conductive carboxymethylchitosan/ aniline pentamer hydrogels. React Funct Polym 2014;82:81-8.
    • (2014) React Funct Polym , vol.82 , pp. 81-88
    • Zhang, L.1    Li, Y.2    Li, L.3
  • 28
    • 84897825773 scopus 로고    scopus 로고
    • In situ forming biodegradable electroactive hydrogels
    • Li LC, Ge J, Guo BL et al. In situ forming biodegradable electroactive hydrogels. Polym Chem 2014;5:2880-90.
    • (2014) Polym Chem , vol.5 , pp. 2880-2890
    • Li, L.C.1    Ge, J.2    Guo, B.L.3
  • 29
    • 84879498742 scopus 로고    scopus 로고
    • Nanostructured scaffolds for bone tissue engineering
    • Li XM, Wang L, Fan YB et al. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 2013;101:2424-35.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 2424-2435
    • Li, X.M.1    Wang, L.2    Fan, Y.B.3
  • 30
    • 84866415693 scopus 로고    scopus 로고
    • Recent advances in bone tissue engineering scaffolds
    • Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012;30:546-54. gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 2014;102:1415-21.
    • (2012) Trends Biotechnol , vol.30 , pp. 546-554
    • Bose, S.1    Roy, M.2    Bandyopadhyay, A.3
  • 31
    • 84887331253 scopus 로고    scopus 로고
    • Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
    • Xia Y, Zhou PY, Cheng XS et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomed 2013;8:4197-213.
    • (2013) Int J Nanomed , vol.8 , pp. 4197-4213
    • Xia, Y.1    Zhou, P.Y.2    Cheng, X.S.3
  • 32
    • 84873432870 scopus 로고    scopus 로고
    • A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering
    • Fricain JC, Schlaubitz S, Le Visage C et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013;34:2947-59.
    • (2013) Biomaterials , vol.34 , pp. 2947-2959
    • Fricain, J.C.1    Schlaubitz, S.2    Le Visage, C.3
  • 33
    • 84897108238 scopus 로고    scopus 로고
    • Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences
    • Vozzi G, Corallo C, Carta S et al. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 2014;102:1415-21.
    • (2014) J Biomed Mater Res A , vol.102 , pp. 1415-1421
    • Vozzi, G.1    Corallo, C.2    Carta, S.3
  • 34
    • 84874889929 scopus 로고    scopus 로고
    • Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications
    • Yan LP, Silva-Correia J, Correia C et al. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine 2013;8:359-78.
    • (2013) Nanomedicine , vol.8 , pp. 359-378
    • Yan, L.P.1    Silva-Correia, J.2    Correia, C.3
  • 35
    • 78650509097 scopus 로고    scopus 로고
    • Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering
    • Hayati AN, Rezaie HR, Hosseinalipour SM. Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett 2011;65:736-9.
    • (2011) Mater Lett , vol.65 , pp. 736-739
    • Hayati, A.N.1    Rezaie, H.R.2    Hosseinalipour, S.M.3
  • 36
    • 77956458276 scopus 로고    scopus 로고
    • Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation
    • Lei B, Chen XF, Wang YJ et al. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A 2010;94A:1091-9.
    • (2010) J Biomed Mater Res A , vol.94A , pp. 1091-1099
    • Lei, B.1    Chen, X.F.2    Wang, Y.J.3
  • 37
    • 80052053547 scopus 로고    scopus 로고
    • Unique physical-chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol-gel bioactive glass microspheres
    • Lei B, Chen XF, Han X et al. Unique physical-chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol-gel bioactive glass microspheres. J Mater Chem 2011;21:12725-34.
    • (2011) J Mater Chem , vol.21 , pp. 12725-12734
    • Lei, B.1    Chen, X.F.2    Han, X.3
  • 38
    • 77956935648 scopus 로고    scopus 로고
    • Polymer/bioactive glass nanocomposites for biomedical applications: a review
    • Boccaccini AR, Erol M, Stark WJ et al. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 2010;70:1764-76.
    • (2010) Compos Sci Technol , vol.70 , pp. 1764-1776
    • Boccaccini, A.R.1    Erol, M.2    Stark, W.J.3
  • 39
    • 80054769541 scopus 로고    scopus 로고
    • Biocompatible alginate/ nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration
    • Srinivasan S, Jayasree R, Chennazhi KP et al. Biocompatible alginate/ nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 2012;87:274-83.
    • (2012) Carbohydr Polym , vol.87 , pp. 274-283
    • Srinivasan, S.1    Jayasree, R.2    Chennazhi, K.P.3
  • 40
    • 80053128542 scopus 로고    scopus 로고
    • Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function
    • Marelli B, Ghezzi CE, Mohn D et al. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 2011;32:8915-26.
    • (2011) Biomaterials , vol.32 , pp. 8915-8926
    • Marelli, B.1    Ghezzi, C.E.2    Mohn, D.3
  • 41
    • 75149150824 scopus 로고    scopus 로고
    • Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications
    • Misra SK, Ansari TI, Valappil SP et al. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 2010;31:2806-15.
    • (2010) Biomaterials , vol.31 , pp. 2806-2815
    • Misra, S.K.1    Ansari, T.I.2    Valappil, S.P.3
  • 42
    • 84862808449 scopus 로고    scopus 로고
    • Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration
    • Lei B, Shin KH, Noh DYet al. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res B 2012;100B:967-75.
    • (2012) J Biomed Mater Res B , vol.100B , pp. 967-975
    • Lei, B.1    Shin, K.H.2    Noh, D.Y.3
  • 43
    • 84873414201 scopus 로고    scopus 로고
    • Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(epsilon-caprolactone) composites for bone tissue engineering
    • Lei B, Shin KH, Noh DY et al. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(epsilon-caprolactone) composites for bone tissue engineering. Mat Sci Eng C Mater 2013;33:1102-8.
    • (2013) Mat Sci Eng C Mater , vol.33 , pp. 1102-1108
    • Lei, B.1    Shin, K.H.2    Noh, D.Y.3
  • 44
    • 84892372325 scopus 로고    scopus 로고
    • Ectopic bone formation in and softtissue response to P(CL/DLLA)/bioactive glass composite scaffolds
    • Meretoja VV, Tirri T, MalinMet al. Ectopic bone formation in and softtissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin Oral Implants Res 2014;25:159-64.
    • (2014) Clin Oral Implants Res , vol.25 , pp. 159-164
    • Meretoja, V.V.1    Tirri, T.2    Malin, M.3
  • 45
    • 79953839270 scopus 로고    scopus 로고
    • A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis
    • Wu CT, Zhang YF, Zhou YH et al. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater 2011;7:2229-36.
    • (2011) Acta Biomater , vol.7 , pp. 2229-2236
    • Wu, C.T.1    Zhang, Y.F.2    Zhou, Y.H.3
  • 46
    • 84870253740 scopus 로고    scopus 로고
    • Review of bioactive glass: from Hench to hybrids
    • Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9:4457-86.
    • (2013) Acta Biomater , vol.9 , pp. 4457-4486
    • Jones, J.R.1
  • 47
    • 84908252071 scopus 로고    scopus 로고
    • Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration
    • Lei B, Shin KH, Koh YH et al. Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B 2014.
    • (2014) J Biomed Mater Res B
    • Lei, B.1    Shin, K.H.2    Koh, Y.H.3
  • 48
    • 78650251420 scopus 로고    scopus 로고
    • Synthesis and electrospinning of epsilon-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process
    • Allo BA, Rizkalla AS, Mequanint K. Synthesis and electrospinning of epsilon-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 2010;26:18340-8.
    • (2010) Langmuir , vol.26 , pp. 18340-18348
    • Allo, B.A.1    Rizkalla, A.S.2    Mequanint, K.3
  • 49
    • 38949146037 scopus 로고    scopus 로고
    • Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application
    • Shirosaki Y, Okayama T, Tsuru K et al. Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J 2008;137:122-8.
    • (2008) Chem Eng J , vol.137 , pp. 122-128
    • Shirosaki, Y.1    Okayama, T.2    Tsuru, K.3
  • 50
    • 84897914705 scopus 로고    scopus 로고
    • Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique
    • Lei B, Shin KH, Jo IH et al. Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Mater Chem Phys 2014;145:397-402.
    • (2014) Mater Chem Phys , vol.145 , pp. 397-402
    • Lei, B.1    Shin, K.H.2    Jo, I.H.3
  • 51
    • 77950826113 scopus 로고    scopus 로고
    • Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer
    • Guo BL, Finne-Wistrand A, Albertsson AC. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules 2010;11:855-63.
    • (2010) Biomacromolecules , vol.11 , pp. 855-863
    • Guo, B.L.1    Finne-Wistrand, A.2    Albertsson, A.C.3
  • 52
    • 84882424036 scopus 로고    scopus 로고
    • Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications
    • Lee JY. Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications. Polym Rev 2013;53:443-59.
    • (2013) Polym Rev , vol.53 , pp. 443-459
    • Lee, J.Y.1
  • 53
    • 84855937121 scopus 로고    scopus 로고
    • Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration
    • Guo BL, Sun Y, Finne-Wistrand A et al. Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater 2012;8:144-53.
    • (2012) Acta Biomater , vol.8 , pp. 144-153
    • Guo, B.L.1    Sun, Y.2    Finne-Wistrand, A.3
  • 54
    • 84887019427 scopus 로고    scopus 로고
    • Conductive PPY/PDLLA conduit for peripheral nerve regeneration
    • Xu H, Holzwarth JM, Yan Y et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 2014;35:225-35.
    • (2014) Biomaterials , vol.35 , pp. 225-235
    • Xu, H.1    Holzwarth, J.M.2    Yan, Y.3
  • 55
    • 79960186409 scopus 로고    scopus 로고
    • 3D nanofibrous scaffolds for tissue engineering
    • Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 2011;21:10243-51.
    • (2011) J Mater Chem , vol.21 , pp. 10243-10251
    • Holzwarth, J.M.1    Ma, P.X.2
  • 56
    • 0141765883 scopus 로고    scopus 로고
    • Fabrication of novel biomaterials through molecular selfassembly
    • Zhang SG. Fabrication of novel biomaterials through molecular selfassembly. Nat Biotechnol 2003;21:1171-8.
    • (2003) Nat Biotechnol , vol.21 , pp. 1171-1178
    • Zhang, S.G.1
  • 57
    • 84906573109 scopus 로고    scopus 로고
    • Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation
    • Li LC, Ge J, Wang L et al. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J Mater Chem B 2014;2:6119-30.
    • (2014) J Mater Chem B , vol.2 , pp. 6119-6130
    • Li, L.C.1    Ge, J.2    Wang, L.3
  • 58
    • 84907638403 scopus 로고    scopus 로고
    • Fabrication of conductive polymerbased nanofiber scaffolds for tissue engineering applications
    • Gu BK, Kim MS, Kang CM et al. Fabrication of conductive polymerbased nanofiber scaffolds for tissue engineering applications. J Nanosci Nanotech 2014;14:7621-6.
    • (2014) J Nanosci Nanotech , vol.14 , pp. 7621-7626
    • Gu, B.K.1    Kim, M.S.2    Kang, C.M.3
  • 59
    • 84873155914 scopus 로고    scopus 로고
    • Current approaches to electrospun nanofibers for tissue engineering
    • Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013;8:014102.
    • (2013) Biomed Mater , vol.8
    • Rim, N.G.1    Shin, C.S.2    Shin, H.3
  • 60
    • 84896351618 scopus 로고    scopus 로고
    • Nanofibrous electroactive scaffolds from a chitosan-graft-aniline tetramer by electrospinning for tissue engineering
    • Ma XJ, Ge J, Li Yet al. Nanofibrous electroactive scaffolds from a chitosan-graft-aniline tetramer by electrospinning for tissue engineering. RSC Adv 2014;4:13652-61.
    • (2014) RSC Adv , vol.4 , pp. 13652-13661
    • Ma, X.J.1    Ge, J.2    Li, Y.3
  • 61
    • 34547475023 scopus 로고    scopus 로고
    • Electrospinning: a fascinating method for the preparation of ultrathin fibres
    • Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 2007;46:5670-703.
    • (2007) Angew Chem Int Ed , vol.46 , pp. 5670-5703
    • Greiner, A.1    Wendorff, J.H.2
  • 62
    • 40049090999 scopus 로고    scopus 로고
    • Electro spinning: applications in drug delivery and tissue engineering
    • Sill TJ, von Recum HA. Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989-2006.
    • (2008) Biomaterials , vol.29 , pp. 1989-2006
    • Sill, T.J.1    von Recum, H.A.2
  • 63
    • 84863310313 scopus 로고    scopus 로고
    • Axially aligned electrically conducting biodegradable nanofibers for neural regeneration
    • Subramanian A, Krishnan UM, Sethuraman S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J Mater Sci Mater Med 2012;23:1797-809.
    • (2012) J Mater Sci Mater Med , vol.23 , pp. 1797-1809
    • Subramanian, A.1    Krishnan, U.M.2    Sethuraman, S.3
  • 64
    • 80055013721 scopus 로고    scopus 로고
    • Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering
    • Kai D, Prabhakaran MP, Jin GR et al. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A 2011;99A:376-85.
    • (2011) J Biomed Mater Res A , vol.99A , pp. 376-385
    • Kai, D.1    Prabhakaran, M.P.2    Jin, G.R.3
  • 65
    • 84873152435 scopus 로고    scopus 로고
    • Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering
    • Chen MC, Sun YC, Chen YH. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 2013;9:5562-72.
    • (2013) Acta Biomater , vol.9 , pp. 5562-5572
    • Chen, M.C.1    Sun, Y.C.2    Chen, Y.H.3
  • 66
    • 84857356084 scopus 로고    scopus 로고
    • Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications
    • Aznar-Cervantes S, Roca MI, Martinez JG et al. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 2012;85:36-43.
    • (2012) Bioelectrochemistry , vol.85 , pp. 36-43
    • Aznar-Cervantes, S.1    Roca, M.I.2    Martinez, J.G.3
  • 67
    • 84885159840 scopus 로고    scopus 로고
    • Nanomembranes and nanofibers from biodegradable conducting polymers
    • Llorens E, Armelin E, Perez-Madrigal MD et al. Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 2013;5:1115-57.
    • (2013) Polymers , vol.5 , pp. 1115-1157
    • Llorens, E.1    Armelin, E.2    Perez-Madrigal, M.D.3
  • 68
    • 84874710743 scopus 로고    scopus 로고
    • Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation
    • Pelto J, Bjorninen M, Palli A et al. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 2013;19:882-92.
    • (2013) Tissue Eng Part A , vol.19 , pp. 882-892
    • Pelto, J.1    Bjorninen, M.2    Palli, A.3
  • 69
    • 84858963001 scopus 로고    scopus 로고
    • Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications
    • Lee JY, Bashur CA, Milroy CA et al. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans Nanobiosci 2012;11:15-21.
    • (2012) IEEE Trans Nanobiosci , vol.11 , pp. 15-21
    • Lee, J.Y.1    Bashur, C.A.2    Milroy, C.A.3
  • 70
    • 84867401900 scopus 로고    scopus 로고
    • Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering
    • Frohbergh ME, Katsman A, Botta GR et al. Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012;33:9167-78.
    • (2012) Biomaterials , vol.33 , pp. 9167-9178
    • Frohbergh, M.E.1    Katsman, A.2    Botta, G.R.3
  • 71
    • 84885179425 scopus 로고    scopus 로고
    • Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering
    • Pascu EI, Stokes J, McGuinness GB. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mat Sci Eng C Mater 2013;33:4905-16.
    • (2013) Mat Sci Eng C Mater , vol.33 , pp. 4905-4916
    • Pascu, E.I.1    Stokes, J.2    McGuinness, G.B.3
  • 72
    • 80055116875 scopus 로고    scopus 로고
    • Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration
    • Phipps MC, Clem WC, Grunda JM et al. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 2012;33:524-34.
    • (2012) Biomaterials , vol.33 , pp. 524-534
    • Phipps, M.C.1    Clem, W.C.2    Grunda, J.M.3
  • 73
    • 80054062393 scopus 로고    scopus 로고
    • Biomimetic nanofibrous scaffolds for bone tissue engineering
    • Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011;32:9622-9.
    • (2011) Biomaterials , vol.32 , pp. 9622-9629
    • Holzwarth, J.M.1    Ma, P.X.2
  • 74
    • 60549101494 scopus 로고    scopus 로고
    • Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
    • Liu X, Smith LA, Hu J et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009;30:2252-8.
    • (2009) Biomaterials , vol.30 , pp. 2252-2258
    • Liu, X.1    Smith, L.A.2    Hu, J.3
  • 75
    • 84870240508 scopus 로고    scopus 로고
    • In vitro evaluation of electrospun gelatinbioactive glass hybrid scaffolds for bone regeneration
    • Gao CX, Gao Q, Li YD et al. In vitro evaluation of electrospun gelatinbioactive glass hybrid scaffolds for bone regeneration. J Appl Polym Sci 2013;127:2588-99.
    • (2013) J Appl Polym Sci , vol.127 , pp. 2588-2599
    • Gao, C.X.1    Gao, Q.2    Li, Y.D.3
  • 76
    • 84879466520 scopus 로고    scopus 로고
    • Poly (epsilon-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications
    • Kouhi M, Morshed M, Varshosaz J et al. Poly (epsilon-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J 2013;228:1057-65.
    • (2013) Chem Eng J , vol.228 , pp. 1057-1065
    • Kouhi, M.1    Morshed, M.2    Varshosaz, J.3
  • 77
    • 84863639128 scopus 로고    scopus 로고
    • Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation
    • Lei B, Shin KH, Noh DY et al. Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem 2012;22:14133-40.
    • (2012) J Mater Chem , vol.22 , pp. 14133-14140
    • Lei, B.1    Shin, K.H.2    Noh, D.Y.3
  • 78
    • 84884561213 scopus 로고    scopus 로고
    • Composite polymerbioceramic scaffolds with drug delivery capability for bone tissue engineering
    • Mourino V, Cattalini JP, Roether JA et al. Composite polymerbioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 2013;10:1353-65.
    • (2013) Expert Opin Drug Deliv , vol.10 , pp. 1353-1365
    • Mourino, V.1    Cattalini, J.P.2    Roether, J.A.3
  • 79
    • 79959912838 scopus 로고    scopus 로고
    • Nano-fibrous tissue engineering scaffolds capable of growth factor delivery
    • Hu J, Ma PX. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Pharm Res 2011;28:1273-81.
    • (2011) Pharm Res , vol.28 , pp. 1273-1281
    • Hu, J.1    Ma, P.X.2
  • 80
    • 69649083312 scopus 로고    scopus 로고
    • Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model
    • Liu Y, Lu Y, Tian XZ et al. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Biomaterials 2009;30:6276-6285.
    • (2009) Biomaterials , vol.30 , pp. 6276-6285
    • Liu, Y.1    Lu, Y.2    Tian, X.Z.3
  • 81
    • 72449179318 scopus 로고    scopus 로고
    • The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation
    • Kanczler JM, Ginty PJ, White L et al. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 2010;31:1242-50.
    • (2010) Biomaterials , vol.31 , pp. 1242-1250
    • Kanczler, J.M.1    Ginty, P.J.2    White, L.3
  • 82
    • 33846869956 scopus 로고    scopus 로고
    • Tailored release of TGF-beta(1) from porous scaffolds for cartilage tissue engineering
    • Sohier J, Hamann D, Koenders M et al. Tailored release of TGF-beta(1) from porous scaffolds for cartilage tissue engineering. Int J Pharm 2007;332:80-9.
    • (2007) Int J Pharm , vol.332 , pp. 80-89
    • Sohier, J.1    Hamann, D.2    Koenders, M.3
  • 83
    • 33846657400 scopus 로고    scopus 로고
    • The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres
    • Wei GB, Jin QM, Giannobile WVet al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28:2087-96.
    • (2007) Biomaterials , vol.28 , pp. 2087-2096
    • Wei, G.B.1    Jin, Q.M.2    Giannobile, W.V.3
  • 84
    • 0023277742 scopus 로고
    • Biomaterial-centered infection: microbial adhesion versus tissue integration
    • Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987;237:1588-95.
    • (1987) Science , vol.237 , pp. 1588-1595
    • Gristina, A.G.1
  • 85
    • 0034769224 scopus 로고    scopus 로고
    • Implant infections: a haven for opportunistic bacteria
    • Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect 2001;49:87-93.
    • (2001) J Hosp Infect , vol.49 , pp. 87-93
    • Schierholz, J.M.1    Beuth, J.2
  • 86
    • 3042856519 scopus 로고    scopus 로고
    • Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds
    • Kim K, Luu YK, Chang C et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controlled Release 2004;98:47-56.
    • (2004) J Controlled Release , vol.98 , pp. 47-56
    • Kim, K.1    Luu, Y.K.2    Chang, C.3
  • 87
    • 77956341686 scopus 로고    scopus 로고
    • Novel antibacterial nanofibrous PLLA scaffolds
    • Feng K, Sun H, Bradley MA et al. Novel antibacterial nanofibrous PLLA scaffolds. J Controlled Release 2010;146:363-9.
    • (2010) J Controlled Release , vol.146 , pp. 363-369
    • Feng, K.1    Sun, H.2    Bradley, M.A.3
  • 88
    • 14844320832 scopus 로고    scopus 로고
    • Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings
    • Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Controlled Release 2005;103:355-67.
    • (2005) J Controlled Release , vol.103 , pp. 355-367
    • Tiller, J.C.1    Sprich, C.2    Hartmann, L.3
  • 89
    • 39749151555 scopus 로고    scopus 로고
    • Silver-nanoparticleembedded antimicrobial paints based on vegetable oil
    • Kumar A, Vemula PK, Ajayan PM et al. Silver-nanoparticleembedded antimicrobial paints based on vegetable oil. Nat Mater 2008; 7:236-41.
    • (2008) Nat Mater , vol.7 , pp. 236-241
    • Kumar, A.1    Vemula, P.K.2    Ajayan, P.M.3
  • 90
    • 3142660451 scopus 로고    scopus 로고
    • Nanoseparated polymeric networks with multiple antimicrobial properties
    • Ho CH, Tobis J, Sprich C et al. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 2004;16:957-61.
    • (2004) Adv Mater , vol.16 , pp. 957-961
    • Ho, C.H.1    Tobis, J.2    Sprich, C.3
  • 91
    • 0025928188 scopus 로고
    • Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone
    • Kristinsson KG, Jansen B, Treitz U et al. Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone J Biomater Appl 1991;5:173-84.
    • (1991) J Biomater Appl , vol.5 , pp. 173-184
    • Kristinsson, K.G.1    Jansen, B.2    Treitz, U.3
  • 92
    • 84898058530 scopus 로고    scopus 로고
    • Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles
    • Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater 2014;10:2096-104.
    • (2014) Acta Biomater , vol.10 , pp. 2096-2104
    • Mohiti-Asli, M.1    Pourdeyhimi, B.2    Loboa, E.G.3
  • 93
    • 0034680096 scopus 로고    scopus 로고
    • Changing patterns of infectious disease
    • Cohen ML. Changing patterns of infectious disease. Nature 2000;406:762-7.
    • (2000) Nature , vol.406 , pp. 762-767
    • Cohen, M.L.1
  • 95
    • 70350722395 scopus 로고    scopus 로고
    • Non-leaching surfaces capable of killing microorganisms on contact
    • Ferreira L, Zumbuehl A. Non-leaching surfaces capable of killing microorganisms on contact. J Mater Chem 2009;19:7796-806.
    • (2009) J Mater Chem , vol.19 , pp. 7796-7806
    • Ferreira, L.1    Zumbuehl, A.2
  • 96
    • 40549092385 scopus 로고    scopus 로고
    • Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating
    • Girshevitz O, Nitzan Y, Sukenik CN. Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating. Chem Mater 2008;20:1390-6.
    • (2008) Chem Mater , vol.20 , pp. 1390-1396
    • Girshevitz, O.1    Nitzan, Y.2    Sukenik, C.N.3
  • 97
    • 22544465856 scopus 로고    scopus 로고
    • Antifungal coating by biofunctionalized polyelectrolyte multilayered films
    • Etienne O, Gasnier C, Taddei C et al. Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 2005;26:6704-12.
    • (2005) Biomaterials , vol.26 , pp. 6704-6712
    • Etienne, O.1    Gasnier, C.2    Taddei, C.3
  • 98
    • 2542512315 scopus 로고    scopus 로고
    • Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization
    • Lee SB, Koepsel RR, Morley SWet al. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 2004;5:877-882.
    • (2004) Biomacromolecules , vol.5 , pp. 877-882
    • Lee, S.B.1    Koepsel, R.R.2    Morley, S.W.3
  • 99
    • 34548049706 scopus 로고    scopus 로고
    • Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells
    • Murata H, Koepsel RR, Matyjaszewski K et al. Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007;28:4870-9.
    • (2007) Biomaterials , vol.28 , pp. 4870-4879
    • Murata, H.1    Koepsel, R.R.2    Matyjaszewski, K.3
  • 100
    • 47349095473 scopus 로고    scopus 로고
    • Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity
    • Huang JY, Koepsel RR, Murata H et al. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 2008;24:6785-95.
    • (2008) Langmuir , vol.24 , pp. 6785-6795
    • Huang, J.Y.1    Koepsel, R.R.2    Murata, H.3
  • 101
    • 33645473934 scopus 로고    scopus 로고
    • Preparation of LL-37-grafted titanium surfaces with bactericidal activity
    • Gabriel M, Nazmi K, Veerman EC et al. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjugate Chem 2006;17:548-50.
    • (2006) Bioconjugate Chem , vol.17 , pp. 548-550
    • Gabriel, M.1    Nazmi, K.2    Veerman, E.C.3
  • 102
    • 79951579755 scopus 로고    scopus 로고
    • A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine
    • Zhou CC, Li P, Qi XB et al. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011;32:2704-12.
    • (2011) Biomaterials , vol.32 , pp. 2704-2712
    • Zhou, C.C.1    Li, P.2    Qi, X.B.3
  • 103
    • 84880054313 scopus 로고    scopus 로고
    • Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity
    • Lim K, Chua RRY, Saravanan R et al. Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 2013;5:6412-22.
    • (2013) ACS Appl Mater Interfaces , vol.5 , pp. 6412-6422
    • Lim, K.1    Chua, R.R.Y.2    Saravanan, R.3
  • 104
    • 84888638582 scopus 로고    scopus 로고
    • Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties
    • Li X, Li P, Saravanan R et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 2014;10:258-66.
    • (2014) Acta Biomater , vol.10 , pp. 258-266
    • Li, X.1    Li, P.2    Saravanan, R.3
  • 105
    • 79151481148 scopus 로고    scopus 로고
    • A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability
    • Li P, Poon YF, Li WF et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 2011;10:149-56.
    • (2011) Nat Mater , vol.10 , pp. 149-156
    • Li, P.1    Poon, Y.F.2    Li, W.F.3
  • 106
    • 84864598994 scopus 로고    scopus 로고
    • Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity
    • Li P, Zhou C, Rayatpisheh S et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 2012;24:4130-7.
    • (2012) Adv Mater , vol.24 , pp. 4130-4137
    • Li, P.1    Zhou, C.2    Rayatpisheh, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.