-
2
-
-
0029007273
-
Biomaterials in tissue engineering
-
Hubbell JA. Biomaterials in tissue engineering. Bio-Technology 1995;13:565-76.
-
(1995)
Bio-Technology
, vol.13
, pp. 565-576
-
-
Hubbell, J.A.1
-
3
-
-
1942449724
-
Polymeric scaffolds for bone tissue engineering
-
Liu XH, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004;32:477-86.
-
(2004)
Ann Biomed Eng
, vol.32
, pp. 477-486
-
-
Liu, X.H.1
Ma, P.X.2
-
4
-
-
37049029660
-
Biomimetic materials for tissue engineering
-
Ma PX. Biomimetic materials for tissue engineering. Adv Drug Delivery Rev 2008;60:184-98.
-
(2008)
Adv Drug Delivery Rev
, vol.60
, pp. 184-198
-
-
Ma, P.X.1
-
5
-
-
84899413081
-
Synthetic biodegradable functional polymers for tissue engineering-a brief review
-
Guo BL, Ma PX. Synthetic biodegradable functional polymers for tissue engineering-a brief review. Sci China Chem 2014;57:490-500.
-
(2014)
Sci China Chem
, vol.57
, pp. 490-500
-
-
Guo, B.L.1
Ma, P.X.2
-
6
-
-
0042562089
-
Biomimetic materials for tissue engineering
-
Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials 2003;24:4353-64.
-
(2003)
Biomaterials
, vol.24
, pp. 4353-4364
-
-
Shin, H.1
Jo, S.2
Mikos, A.G.3
-
8
-
-
84899889621
-
Biomimetic porous scaffolds for bone tissue engineering
-
Wu SL, Liu XM, Yeung KWK et al. Biomimetic porous scaffolds for bone tissue engineering. Mat Sci Eng R 2014;80:1-36.
-
(2014)
Mat Sci Eng R
, vol.80
, pp. 1-36
-
-
Wu, S.L.1
Liu, X.M.2
Yeung, K.W.K.3
-
9
-
-
84885018649
-
Synthetic biopolymer nanocomposites for tissue engineering scaffolds
-
Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 2013;38:1487-503.
-
(2013)
Prog Polym Sci
, vol.38
, pp. 1487-1503
-
-
Okamoto, M.1
John, B.2
-
10
-
-
84889858025
-
Mimicking the nanostructure of bone matrix to regenerate bone
-
Kane R, Ma PX. Mimicking the nanostructure of bone matrix to regenerate bone. Mater Today 2013;16:418-23.
-
(2013)
Mater Today
, vol.16
, pp. 418-423
-
-
Kane, R.1
Ma, P.X.2
-
11
-
-
84865302659
-
Nanofiber-based delivery of bioactive agents and stem cells to bone sites
-
Zhang ZP, Hu J, Ma PX. Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Delivery Rev 2013;64:1129-41.
-
(2013)
Adv Drug Delivery Rev
, vol.64
, pp. 1129-1141
-
-
Zhang, Z.P.1
Hu, J.2
Ma, P.X.3
-
12
-
-
78751546515
-
Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation
-
Wong LJ, Kavallaris M, Bulmus V. Doxorubicin conjugated, crosslinked, PEGylated particles prepared via one-pot thiol-ene modification of a homopolymer scaffold: synthesis and in vitro evaluation. Polym Chem 2011;2:385-93.
-
(2011)
Polym Chem
, vol.2
, pp. 385-393
-
-
Wong, L.J.1
Kavallaris, M.2
Bulmus, V.3
-
13
-
-
84861596830
-
Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels
-
He SH, Xia T, Wang H et al. Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater 2012;8:2659-69.
-
(2012)
Acta Biomater
, vol.8
, pp. 2659-2669
-
-
He, S.H.1
Xia, T.2
Wang, H.3
-
14
-
-
12344263658
-
Infections associated with medical devices-pathogenesis, management and prophylaxis
-
von Eiff C, Jansen B, Kohnen W et al. Infections associated with medical devices-pathogenesis, management and prophylaxis. Drugs 2005;65:179-214.
-
(2005)
Drugs
, vol.65
, pp. 179-214
-
-
von Eiff, C.1
Jansen, B.2
Kohnen, W.3
-
15
-
-
33747812542
-
Reducing implant-related infections: active release strategies
-
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35:780-9.
-
(2006)
Chem Soc Rev
, vol.35
, pp. 780-789
-
-
Hetrick, E.M.1
Schoenfisch, M.H.2
-
16
-
-
34249895273
-
Antibacterial polypropylene via surface-initiated atom transfer radical polymerization
-
Huang JY, Murata H, Koepsel RR et al. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules 2007;8:1396-9.
-
(2007)
Biomacromolecules
, vol.8
, pp. 1396-1399
-
-
Huang, J.Y.1
Murata, H.2
Koepsel, R.R.3
-
17
-
-
85012844566
-
Reduction in central line-associated bloodstream infections among patients in intensive care units-Pennsylvania
-
April 2001-March 2005 [Reprinted from MMWR, Vol. 54, pp. 1013-6, 2005)
-
Muto C, Herbert C, Harrison E et al. Reduction in central line-associated bloodstream infections among patients in intensive care units-Pennsylvania, April 2001-March 2005 [Reprinted from MMWR, Vol. 54, pp. 1013-6, 2005). JAMA 2006;295:269-70.
-
(2006)
JAMA
, vol.295
, pp. 269-270
-
-
Muto, C.1
Herbert, C.2
Harrison, E.3
-
19
-
-
84863645119
-
A single component conducting polymer hydrogel as a scaffold for tissue engineering
-
Mawad D, Stewart E, Officer DL et al. A single component conducting polymer hydrogel as a scaffold for tissue engineering. Adv Funct Mater 2012;22:2692-9.
-
(2012)
Adv Funct Mater
, vol.22
, pp. 2692-2699
-
-
Mawad, D.1
Stewart, E.2
Officer, D.L.3
-
20
-
-
75249089392
-
Electroconductive hydrogels: synthesis, characterization and biomedical applications
-
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010;31:2701-16.
-
(2010)
Biomaterials
, vol.31
, pp. 2701-2716
-
-
Guiseppi-Elie, A.1
-
21
-
-
0042061223
-
Hydrogels for tissue engineering: scaffold design variables and applications
-
Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003;24:4337-51.
-
(2003)
Biomaterials
, vol.24
, pp. 4337-4351
-
-
Drury, J.L.1
Mooney, D.J.2
-
22
-
-
84863034486
-
Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
-
Liu YD, Hu J, Zhuang XL et al. Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol Biosci 2011;12:241-50.
-
(2011)
Macromol Biosci
, vol.12
, pp. 241-250
-
-
Liu, Y.D.1
Hu, J.2
Zhuang, X.L.3
-
23
-
-
84882264696
-
Biodegradable and electrically conducting polymers for biomedical applications
-
Guo BL, Glavas L, Albertsson AC. Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 2013;38:1263-86.
-
(2013)
Prog Polym Sci
, vol.38
, pp. 1263-1286
-
-
Guo, B.L.1
Glavas, L.2
Albertsson, A.C.3
-
24
-
-
79953061850
-
Versatile functionalization of polyester hydrogels with electroactive aniline oligomers
-
Guo BL, Finne-Wistrand A, Albertsson AC. Versatile functionalization of polyester hydrogels with electroactive aniline oligomers. J Polym Sci A Polym Chem 2011;49:2097-105.
-
(2011)
J Polym Sci A Polym Chem
, vol.49
, pp. 2097-2105
-
-
Guo, B.L.1
Finne-Wistrand, A.2
Albertsson, A.C.3
-
25
-
-
79952159589
-
Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior
-
Guo BL, Finne-Wistrand A, Albertsson AC. Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem Mater 2011;23:1254-62.
-
(2011)
Chem Mater
, vol.23
, pp. 1254-1262
-
-
Guo, B.L.1
Finne-Wistrand, A.2
Albertsson, A.C.3
-
26
-
-
79960227637
-
Facile synthesis of degradable and electrically conductive polysaccharide hydrogels
-
Guo BL, Finne-Wistrand A, Albertsson AC. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromolecules 2011;12:2601-9.
-
(2011)
Biomacromolecules
, vol.12
, pp. 2601-2609
-
-
Guo, B.L.1
Finne-Wistrand, A.2
Albertsson, A.C.3
-
27
-
-
84903989508
-
Non-cytotoxic conductive carboxymethylchitosan/ aniline pentamer hydrogels
-
Zhang L, Li Y, Li L et al. Non-cytotoxic conductive carboxymethylchitosan/ aniline pentamer hydrogels. React Funct Polym 2014;82:81-8.
-
(2014)
React Funct Polym
, vol.82
, pp. 81-88
-
-
Zhang, L.1
Li, Y.2
Li, L.3
-
28
-
-
84897825773
-
In situ forming biodegradable electroactive hydrogels
-
Li LC, Ge J, Guo BL et al. In situ forming biodegradable electroactive hydrogels. Polym Chem 2014;5:2880-90.
-
(2014)
Polym Chem
, vol.5
, pp. 2880-2890
-
-
Li, L.C.1
Ge, J.2
Guo, B.L.3
-
29
-
-
84879498742
-
Nanostructured scaffolds for bone tissue engineering
-
Li XM, Wang L, Fan YB et al. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 2013;101:2424-35.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 2424-2435
-
-
Li, X.M.1
Wang, L.2
Fan, Y.B.3
-
30
-
-
84866415693
-
Recent advances in bone tissue engineering scaffolds
-
Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 2012;30:546-54. gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 2014;102:1415-21.
-
(2012)
Trends Biotechnol
, vol.30
, pp. 546-554
-
-
Bose, S.1
Roy, M.2
Bandyopadhyay, A.3
-
31
-
-
84887331253
-
Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications
-
Xia Y, Zhou PY, Cheng XS et al. Selective laser sintering fabrication of nano-hydroxyapatite/poly-epsilon-caprolactone scaffolds for bone tissue engineering applications. Int J Nanomed 2013;8:4197-213.
-
(2013)
Int J Nanomed
, vol.8
, pp. 4197-4213
-
-
Xia, Y.1
Zhou, P.Y.2
Cheng, X.S.3
-
32
-
-
84873432870
-
A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering
-
Fricain JC, Schlaubitz S, Le Visage C et al. A nano-hydroxyapatite-pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013;34:2947-59.
-
(2013)
Biomaterials
, vol.34
, pp. 2947-2959
-
-
Fricain, J.C.1
Schlaubitz, S.2
Le Visage, C.3
-
33
-
-
84897108238
-
Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences
-
Vozzi G, Corallo C, Carta S et al. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences. J Biomed Mater Res A 2014;102:1415-21.
-
(2014)
J Biomed Mater Res A
, vol.102
, pp. 1415-1421
-
-
Vozzi, G.1
Corallo, C.2
Carta, S.3
-
34
-
-
84874889929
-
Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications
-
Yan LP, Silva-Correia J, Correia C et al. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine 2013;8:359-78.
-
(2013)
Nanomedicine
, vol.8
, pp. 359-378
-
-
Yan, L.P.1
Silva-Correia, J.2
Correia, C.3
-
35
-
-
78650509097
-
Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering
-
Hayati AN, Rezaie HR, Hosseinalipour SM. Preparation of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Mater Lett 2011;65:736-9.
-
(2011)
Mater Lett
, vol.65
, pp. 736-739
-
-
Hayati, A.N.1
Rezaie, H.R.2
Hosseinalipour, S.M.3
-
36
-
-
77956458276
-
Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation
-
Lei B, Chen XF, Wang YJ et al. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A 2010;94A:1091-9.
-
(2010)
J Biomed Mater Res A
, vol.94A
, pp. 1091-1099
-
-
Lei, B.1
Chen, X.F.2
Wang, Y.J.3
-
37
-
-
80052053547
-
Unique physical-chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol-gel bioactive glass microspheres
-
Lei B, Chen XF, Han X et al. Unique physical-chemical, apatite-forming properties and human marrow mesenchymal stem cells (HMSCs) response of sol-gel bioactive glass microspheres. J Mater Chem 2011;21:12725-34.
-
(2011)
J Mater Chem
, vol.21
, pp. 12725-12734
-
-
Lei, B.1
Chen, X.F.2
Han, X.3
-
38
-
-
77956935648
-
Polymer/bioactive glass nanocomposites for biomedical applications: a review
-
Boccaccini AR, Erol M, Stark WJ et al. Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 2010;70:1764-76.
-
(2010)
Compos Sci Technol
, vol.70
, pp. 1764-1776
-
-
Boccaccini, A.R.1
Erol, M.2
Stark, W.J.3
-
39
-
-
80054769541
-
Biocompatible alginate/ nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration
-
Srinivasan S, Jayasree R, Chennazhi KP et al. Biocompatible alginate/ nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 2012;87:274-83.
-
(2012)
Carbohydr Polym
, vol.87
, pp. 274-283
-
-
Srinivasan, S.1
Jayasree, R.2
Chennazhi, K.P.3
-
40
-
-
80053128542
-
Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function
-
Marelli B, Ghezzi CE, Mohn D et al. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 2011;32:8915-26.
-
(2011)
Biomaterials
, vol.32
, pp. 8915-8926
-
-
Marelli, B.1
Ghezzi, C.E.2
Mohn, D.3
-
41
-
-
75149150824
-
Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications
-
Misra SK, Ansari TI, Valappil SP et al. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 2010;31:2806-15.
-
(2010)
Biomaterials
, vol.31
, pp. 2806-2815
-
-
Misra, S.K.1
Ansari, T.I.2
Valappil, S.P.3
-
42
-
-
84862808449
-
Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration
-
Lei B, Shin KH, Noh DYet al. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bone tissue regeneration. J Biomed Mater Res B 2012;100B:967-75.
-
(2012)
J Biomed Mater Res B
, vol.100B
, pp. 967-975
-
-
Lei, B.1
Shin, K.H.2
Noh, D.Y.3
-
43
-
-
84873414201
-
Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(epsilon-caprolactone) composites for bone tissue engineering
-
Lei B, Shin KH, Noh DY et al. Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(epsilon-caprolactone) composites for bone tissue engineering. Mat Sci Eng C Mater 2013;33:1102-8.
-
(2013)
Mat Sci Eng C Mater
, vol.33
, pp. 1102-1108
-
-
Lei, B.1
Shin, K.H.2
Noh, D.Y.3
-
44
-
-
84892372325
-
Ectopic bone formation in and softtissue response to P(CL/DLLA)/bioactive glass composite scaffolds
-
Meretoja VV, Tirri T, MalinMet al. Ectopic bone formation in and softtissue response to P(CL/DLLA)/bioactive glass composite scaffolds. Clin Oral Implants Res 2014;25:159-64.
-
(2014)
Clin Oral Implants Res
, vol.25
, pp. 159-164
-
-
Meretoja, V.V.1
Tirri, T.2
Malin, M.3
-
45
-
-
79953839270
-
A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis
-
Wu CT, Zhang YF, Zhou YH et al. A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater 2011;7:2229-36.
-
(2011)
Acta Biomater
, vol.7
, pp. 2229-2236
-
-
Wu, C.T.1
Zhang, Y.F.2
Zhou, Y.H.3
-
46
-
-
84870253740
-
Review of bioactive glass: from Hench to hybrids
-
Jones JR. Review of bioactive glass: from Hench to hybrids. Acta Biomater 2013;9:4457-86.
-
(2013)
Acta Biomater
, vol.9
, pp. 4457-4486
-
-
Jones, J.R.1
-
47
-
-
84908252071
-
Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration
-
Lei B, Shin KH, Koh YH et al. Porous gelatin-siloxane hybrid scaffolds with biomimetic structure and properties for bone tissue regeneration. J Biomed Mater Res B 2014.
-
(2014)
J Biomed Mater Res B
-
-
Lei, B.1
Shin, K.H.2
Koh, Y.H.3
-
48
-
-
78650251420
-
Synthesis and electrospinning of epsilon-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process
-
Allo BA, Rizkalla AS, Mequanint K. Synthesis and electrospinning of epsilon-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 2010;26:18340-8.
-
(2010)
Langmuir
, vol.26
, pp. 18340-18348
-
-
Allo, B.A.1
Rizkalla, A.S.2
Mequanint, K.3
-
49
-
-
38949146037
-
Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application
-
Shirosaki Y, Okayama T, Tsuru K et al. Synthesis and cytocompatibility of porous chitosan-silicate hybrids for tissue engineering scaffold application. Chem Eng J 2008;137:122-8.
-
(2008)
Chem Eng J
, vol.137
, pp. 122-128
-
-
Shirosaki, Y.1
Okayama, T.2
Tsuru, K.3
-
50
-
-
84897914705
-
Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique
-
Lei B, Shin KH, Jo IH et al. Highly porous gelatin-silica hybrid scaffolds with textured surfaces using new direct foaming/freezing technique. Mater Chem Phys 2014;145:397-402.
-
(2014)
Mater Chem Phys
, vol.145
, pp. 397-402
-
-
Lei, B.1
Shin, K.H.2
Jo, I.H.3
-
51
-
-
77950826113
-
Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer
-
Guo BL, Finne-Wistrand A, Albertsson AC. Molecular architecture of electroactive and biodegradable copolymers composed of polylactide and carboxyl-capped aniline trimer. Biomacromolecules 2010;11:855-63.
-
(2010)
Biomacromolecules
, vol.11
, pp. 855-863
-
-
Guo, B.L.1
Finne-Wistrand, A.2
Albertsson, A.C.3
-
52
-
-
84882424036
-
Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications
-
Lee JY. Electrically conducting polymer-based nanofibrous scaffolds for tissue engineering applications. Polym Rev 2013;53:443-59.
-
(2013)
Polym Rev
, vol.53
, pp. 443-459
-
-
Lee, J.Y.1
-
53
-
-
84855937121
-
Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration
-
Guo BL, Sun Y, Finne-Wistrand A et al. Electroactive tubular porous scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomater 2012;8:144-53.
-
(2012)
Acta Biomater
, vol.8
, pp. 144-153
-
-
Guo, B.L.1
Sun, Y.2
Finne-Wistrand, A.3
-
54
-
-
84887019427
-
Conductive PPY/PDLLA conduit for peripheral nerve regeneration
-
Xu H, Holzwarth JM, Yan Y et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 2014;35:225-35.
-
(2014)
Biomaterials
, vol.35
, pp. 225-235
-
-
Xu, H.1
Holzwarth, J.M.2
Yan, Y.3
-
55
-
-
79960186409
-
3D nanofibrous scaffolds for tissue engineering
-
Holzwarth JM, Ma PX. 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 2011;21:10243-51.
-
(2011)
J Mater Chem
, vol.21
, pp. 10243-10251
-
-
Holzwarth, J.M.1
Ma, P.X.2
-
56
-
-
0141765883
-
Fabrication of novel biomaterials through molecular selfassembly
-
Zhang SG. Fabrication of novel biomaterials through molecular selfassembly. Nat Biotechnol 2003;21:1171-8.
-
(2003)
Nat Biotechnol
, vol.21
, pp. 1171-1178
-
-
Zhang, S.G.1
-
57
-
-
84906573109
-
Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation
-
Li LC, Ge J, Wang L et al. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J Mater Chem B 2014;2:6119-30.
-
(2014)
J Mater Chem B
, vol.2
, pp. 6119-6130
-
-
Li, L.C.1
Ge, J.2
Wang, L.3
-
58
-
-
84907638403
-
Fabrication of conductive polymerbased nanofiber scaffolds for tissue engineering applications
-
Gu BK, Kim MS, Kang CM et al. Fabrication of conductive polymerbased nanofiber scaffolds for tissue engineering applications. J Nanosci Nanotech 2014;14:7621-6.
-
(2014)
J Nanosci Nanotech
, vol.14
, pp. 7621-7626
-
-
Gu, B.K.1
Kim, M.S.2
Kang, C.M.3
-
59
-
-
84873155914
-
Current approaches to electrospun nanofibers for tissue engineering
-
Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater 2013;8:014102.
-
(2013)
Biomed Mater
, vol.8
-
-
Rim, N.G.1
Shin, C.S.2
Shin, H.3
-
60
-
-
84896351618
-
Nanofibrous electroactive scaffolds from a chitosan-graft-aniline tetramer by electrospinning for tissue engineering
-
Ma XJ, Ge J, Li Yet al. Nanofibrous electroactive scaffolds from a chitosan-graft-aniline tetramer by electrospinning for tissue engineering. RSC Adv 2014;4:13652-61.
-
(2014)
RSC Adv
, vol.4
, pp. 13652-13661
-
-
Ma, X.J.1
Ge, J.2
Li, Y.3
-
61
-
-
34547475023
-
Electrospinning: a fascinating method for the preparation of ultrathin fibres
-
Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 2007;46:5670-703.
-
(2007)
Angew Chem Int Ed
, vol.46
, pp. 5670-5703
-
-
Greiner, A.1
Wendorff, J.H.2
-
62
-
-
40049090999
-
Electro spinning: applications in drug delivery and tissue engineering
-
Sill TJ, von Recum HA. Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 2008;29:1989-2006.
-
(2008)
Biomaterials
, vol.29
, pp. 1989-2006
-
-
Sill, T.J.1
von Recum, H.A.2
-
63
-
-
84863310313
-
Axially aligned electrically conducting biodegradable nanofibers for neural regeneration
-
Subramanian A, Krishnan UM, Sethuraman S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J Mater Sci Mater Med 2012;23:1797-809.
-
(2012)
J Mater Sci Mater Med
, vol.23
, pp. 1797-1809
-
-
Subramanian, A.1
Krishnan, U.M.2
Sethuraman, S.3
-
64
-
-
80055013721
-
Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering
-
Kai D, Prabhakaran MP, Jin GR et al. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A 2011;99A:376-85.
-
(2011)
J Biomed Mater Res A
, vol.99A
, pp. 376-385
-
-
Kai, D.1
Prabhakaran, M.P.2
Jin, G.R.3
-
65
-
-
84873152435
-
Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering
-
Chen MC, Sun YC, Chen YH. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater 2013;9:5562-72.
-
(2013)
Acta Biomater
, vol.9
, pp. 5562-5572
-
-
Chen, M.C.1
Sun, Y.C.2
Chen, Y.H.3
-
66
-
-
84857356084
-
Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications
-
Aznar-Cervantes S, Roca MI, Martinez JG et al. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 2012;85:36-43.
-
(2012)
Bioelectrochemistry
, vol.85
, pp. 36-43
-
-
Aznar-Cervantes, S.1
Roca, M.I.2
Martinez, J.G.3
-
67
-
-
84885159840
-
Nanomembranes and nanofibers from biodegradable conducting polymers
-
Llorens E, Armelin E, Perez-Madrigal MD et al. Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers 2013;5:1115-57.
-
(2013)
Polymers
, vol.5
, pp. 1115-1157
-
-
Llorens, E.1
Armelin, E.2
Perez-Madrigal, M.D.3
-
68
-
-
84874710743
-
Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation
-
Pelto J, Bjorninen M, Palli A et al. Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 2013;19:882-92.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 882-892
-
-
Pelto, J.1
Bjorninen, M.2
Palli, A.3
-
69
-
-
84858963001
-
Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications
-
Lee JY, Bashur CA, Milroy CA et al. Nerve growth factor-immobilized electrically conducting fibrous scaffolds for potential use in neural engineering applications. IEEE Trans Nanobiosci 2012;11:15-21.
-
(2012)
IEEE Trans Nanobiosci
, vol.11
, pp. 15-21
-
-
Lee, J.Y.1
Bashur, C.A.2
Milroy, C.A.3
-
70
-
-
84867401900
-
Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering
-
Frohbergh ME, Katsman A, Botta GR et al. Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 2012;33:9167-78.
-
(2012)
Biomaterials
, vol.33
, pp. 9167-9178
-
-
Frohbergh, M.E.1
Katsman, A.2
Botta, G.R.3
-
71
-
-
84885179425
-
Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering
-
Pascu EI, Stokes J, McGuinness GB. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mat Sci Eng C Mater 2013;33:4905-16.
-
(2013)
Mat Sci Eng C Mater
, vol.33
, pp. 4905-4916
-
-
Pascu, E.I.1
Stokes, J.2
McGuinness, G.B.3
-
72
-
-
80055116875
-
Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration
-
Phipps MC, Clem WC, Grunda JM et al. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 2012;33:524-34.
-
(2012)
Biomaterials
, vol.33
, pp. 524-534
-
-
Phipps, M.C.1
Clem, W.C.2
Grunda, J.M.3
-
73
-
-
80054062393
-
Biomimetic nanofibrous scaffolds for bone tissue engineering
-
Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011;32:9622-9.
-
(2011)
Biomaterials
, vol.32
, pp. 9622-9629
-
-
Holzwarth, J.M.1
Ma, P.X.2
-
74
-
-
60549101494
-
Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
-
Liu X, Smith LA, Hu J et al. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 2009;30:2252-8.
-
(2009)
Biomaterials
, vol.30
, pp. 2252-2258
-
-
Liu, X.1
Smith, L.A.2
Hu, J.3
-
75
-
-
84870240508
-
In vitro evaluation of electrospun gelatinbioactive glass hybrid scaffolds for bone regeneration
-
Gao CX, Gao Q, Li YD et al. In vitro evaluation of electrospun gelatinbioactive glass hybrid scaffolds for bone regeneration. J Appl Polym Sci 2013;127:2588-99.
-
(2013)
J Appl Polym Sci
, vol.127
, pp. 2588-2599
-
-
Gao, C.X.1
Gao, Q.2
Li, Y.D.3
-
76
-
-
84879466520
-
Poly (epsilon-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications
-
Kouhi M, Morshed M, Varshosaz J et al. Poly (epsilon-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: preparation, characterization and in vitro drug release for bone regeneration applications. Chem Eng J 2013;228:1057-65.
-
(2013)
Chem Eng J
, vol.228
, pp. 1057-1065
-
-
Kouhi, M.1
Morshed, M.2
Varshosaz, J.3
-
77
-
-
84863639128
-
Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation
-
Lei B, Shin KH, Noh DY et al. Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. J Mater Chem 2012;22:14133-40.
-
(2012)
J Mater Chem
, vol.22
, pp. 14133-14140
-
-
Lei, B.1
Shin, K.H.2
Noh, D.Y.3
-
78
-
-
84884561213
-
Composite polymerbioceramic scaffolds with drug delivery capability for bone tissue engineering
-
Mourino V, Cattalini JP, Roether JA et al. Composite polymerbioceramic scaffolds with drug delivery capability for bone tissue engineering. Expert Opin Drug Deliv 2013;10:1353-65.
-
(2013)
Expert Opin Drug Deliv
, vol.10
, pp. 1353-1365
-
-
Mourino, V.1
Cattalini, J.P.2
Roether, J.A.3
-
79
-
-
79959912838
-
Nano-fibrous tissue engineering scaffolds capable of growth factor delivery
-
Hu J, Ma PX. Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Pharm Res 2011;28:1273-81.
-
(2011)
Pharm Res
, vol.28
, pp. 1273-1281
-
-
Hu, J.1
Ma, P.X.2
-
80
-
-
69649083312
-
Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model
-
Liu Y, Lu Y, Tian XZ et al. Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Biomaterials 2009;30:6276-6285.
-
(2009)
Biomaterials
, vol.30
, pp. 6276-6285
-
-
Liu, Y.1
Lu, Y.2
Tian, X.Z.3
-
81
-
-
72449179318
-
The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation
-
Kanczler JM, Ginty PJ, White L et al. The effect of the delivery of vascular endothelial growth factor and bone morphogenic protein-2 to osteoprogenitor cell populations on bone formation. Biomaterials 2010;31:1242-50.
-
(2010)
Biomaterials
, vol.31
, pp. 1242-1250
-
-
Kanczler, J.M.1
Ginty, P.J.2
White, L.3
-
82
-
-
33846869956
-
Tailored release of TGF-beta(1) from porous scaffolds for cartilage tissue engineering
-
Sohier J, Hamann D, Koenders M et al. Tailored release of TGF-beta(1) from porous scaffolds for cartilage tissue engineering. Int J Pharm 2007;332:80-9.
-
(2007)
Int J Pharm
, vol.332
, pp. 80-89
-
-
Sohier, J.1
Hamann, D.2
Koenders, M.3
-
83
-
-
33846657400
-
The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres
-
Wei GB, Jin QM, Giannobile WVet al. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 2007;28:2087-96.
-
(2007)
Biomaterials
, vol.28
, pp. 2087-2096
-
-
Wei, G.B.1
Jin, Q.M.2
Giannobile, W.V.3
-
84
-
-
0023277742
-
Biomaterial-centered infection: microbial adhesion versus tissue integration
-
Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 1987;237:1588-95.
-
(1987)
Science
, vol.237
, pp. 1588-1595
-
-
Gristina, A.G.1
-
85
-
-
0034769224
-
Implant infections: a haven for opportunistic bacteria
-
Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect 2001;49:87-93.
-
(2001)
J Hosp Infect
, vol.49
, pp. 87-93
-
-
Schierholz, J.M.1
Beuth, J.2
-
86
-
-
3042856519
-
Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds
-
Kim K, Luu YK, Chang C et al. Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controlled Release 2004;98:47-56.
-
(2004)
J Controlled Release
, vol.98
, pp. 47-56
-
-
Kim, K.1
Luu, Y.K.2
Chang, C.3
-
87
-
-
77956341686
-
Novel antibacterial nanofibrous PLLA scaffolds
-
Feng K, Sun H, Bradley MA et al. Novel antibacterial nanofibrous PLLA scaffolds. J Controlled Release 2010;146:363-9.
-
(2010)
J Controlled Release
, vol.146
, pp. 363-369
-
-
Feng, K.1
Sun, H.2
Bradley, M.A.3
-
88
-
-
14844320832
-
Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings
-
Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Controlled Release 2005;103:355-67.
-
(2005)
J Controlled Release
, vol.103
, pp. 355-367
-
-
Tiller, J.C.1
Sprich, C.2
Hartmann, L.3
-
89
-
-
39749151555
-
Silver-nanoparticleembedded antimicrobial paints based on vegetable oil
-
Kumar A, Vemula PK, Ajayan PM et al. Silver-nanoparticleembedded antimicrobial paints based on vegetable oil. Nat Mater 2008; 7:236-41.
-
(2008)
Nat Mater
, vol.7
, pp. 236-241
-
-
Kumar, A.1
Vemula, P.K.2
Ajayan, P.M.3
-
90
-
-
3142660451
-
Nanoseparated polymeric networks with multiple antimicrobial properties
-
Ho CH, Tobis J, Sprich C et al. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 2004;16:957-61.
-
(2004)
Adv Mater
, vol.16
, pp. 957-961
-
-
Ho, C.H.1
Tobis, J.2
Sprich, C.3
-
91
-
-
0025928188
-
Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone
-
Kristinsson KG, Jansen B, Treitz U et al. Antimicrobial activity of polymers coated with iodine-complexed polyvinylpyrrolidone J Biomater Appl 1991;5:173-84.
-
(1991)
J Biomater Appl
, vol.5
, pp. 173-184
-
-
Kristinsson, K.G.1
Jansen, B.2
Treitz, U.3
-
92
-
-
84898058530
-
Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles
-
Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater 2014;10:2096-104.
-
(2014)
Acta Biomater
, vol.10
, pp. 2096-2104
-
-
Mohiti-Asli, M.1
Pourdeyhimi, B.2
Loboa, E.G.3
-
93
-
-
0034680096
-
Changing patterns of infectious disease
-
Cohen ML. Changing patterns of infectious disease. Nature 2000;406:762-7.
-
(2000)
Nature
, vol.406
, pp. 762-767
-
-
Cohen, M.L.1
-
95
-
-
70350722395
-
Non-leaching surfaces capable of killing microorganisms on contact
-
Ferreira L, Zumbuehl A. Non-leaching surfaces capable of killing microorganisms on contact. J Mater Chem 2009;19:7796-806.
-
(2009)
J Mater Chem
, vol.19
, pp. 7796-7806
-
-
Ferreira, L.1
Zumbuehl, A.2
-
96
-
-
40549092385
-
Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating
-
Girshevitz O, Nitzan Y, Sukenik CN. Solution-deposited amorphous titanium dioxide on silicone rubber: a conformal, crack-free antibacterial coating. Chem Mater 2008;20:1390-6.
-
(2008)
Chem Mater
, vol.20
, pp. 1390-1396
-
-
Girshevitz, O.1
Nitzan, Y.2
Sukenik, C.N.3
-
97
-
-
22544465856
-
Antifungal coating by biofunctionalized polyelectrolyte multilayered films
-
Etienne O, Gasnier C, Taddei C et al. Antifungal coating by biofunctionalized polyelectrolyte multilayered films. Biomaterials 2005;26:6704-12.
-
(2005)
Biomaterials
, vol.26
, pp. 6704-6712
-
-
Etienne, O.1
Gasnier, C.2
Taddei, C.3
-
98
-
-
2542512315
-
Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization
-
Lee SB, Koepsel RR, Morley SWet al. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 2004;5:877-882.
-
(2004)
Biomacromolecules
, vol.5
, pp. 877-882
-
-
Lee, S.B.1
Koepsel, R.R.2
Morley, S.W.3
-
99
-
-
34548049706
-
Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells
-
Murata H, Koepsel RR, Matyjaszewski K et al. Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomaterials 2007;28:4870-9.
-
(2007)
Biomaterials
, vol.28
, pp. 4870-4879
-
-
Murata, H.1
Koepsel, R.R.2
Matyjaszewski, K.3
-
100
-
-
47349095473
-
Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity
-
Huang JY, Koepsel RR, Murata H et al. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. Langmuir 2008;24:6785-95.
-
(2008)
Langmuir
, vol.24
, pp. 6785-6795
-
-
Huang, J.Y.1
Koepsel, R.R.2
Murata, H.3
-
101
-
-
33645473934
-
Preparation of LL-37-grafted titanium surfaces with bactericidal activity
-
Gabriel M, Nazmi K, Veerman EC et al. Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjugate Chem 2006;17:548-50.
-
(2006)
Bioconjugate Chem
, vol.17
, pp. 548-550
-
-
Gabriel, M.1
Nazmi, K.2
Veerman, E.C.3
-
102
-
-
79951579755
-
A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine
-
Zhou CC, Li P, Qi XB et al. A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-L-lysine. Biomaterials 2011;32:2704-12.
-
(2011)
Biomaterials
, vol.32
, pp. 2704-2712
-
-
Zhou, C.C.1
Li, P.2
Qi, X.B.3
-
103
-
-
84880054313
-
Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity
-
Lim K, Chua RRY, Saravanan R et al. Immobilization studies of an engineered arginine-tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 2013;5:6412-22.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, pp. 6412-6422
-
-
Lim, K.1
Chua, R.R.Y.2
Saravanan, R.3
-
104
-
-
84888638582
-
Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties
-
Li X, Li P, Saravanan R et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater 2014;10:258-66.
-
(2014)
Acta Biomater
, vol.10
, pp. 258-266
-
-
Li, X.1
Li, P.2
Saravanan, R.3
-
105
-
-
79151481148
-
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability
-
Li P, Poon YF, Li WF et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 2011;10:149-56.
-
(2011)
Nat Mater
, vol.10
, pp. 149-156
-
-
Li, P.1
Poon, Y.F.2
Li, W.F.3
-
106
-
-
84864598994
-
Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity
-
Li P, Zhou C, Rayatpisheh S et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Adv Mater 2012;24:4130-7.
-
(2012)
Adv Mater
, vol.24
, pp. 4130-4137
-
-
Li, P.1
Zhou, C.2
Rayatpisheh, S.3
|