-
1
-
-
33646468919
-
Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy
-
Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials. 2006;27:3515-8.
-
(2006)
Biomaterials
, vol.27
, pp. 3515-3518
-
-
Bellamkonda, R.V.1
-
2
-
-
0026572058
-
Peripheral nerve transplantation: The effects of predegenerated grafts and immunosuppression
-
Trumble TE. Peripheral nerve transplantation: the effects of predegenerated grafts and immunosuppression. J Neural Transplant Plast. 1992;3:39-49.
-
(1992)
J Neural Transplant Plast
, vol.3
, pp. 39-49
-
-
Trumble, T.E.1
-
3
-
-
1642377825
-
The interaction of Schwann cells with chitosan membranes and fibers in vitro
-
DOI 10.1016/j.biomaterials.2003.11.029, PII S0142961203010937
-
Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25:4273-8. (Pubitemid 38388588)
-
(2004)
Biomaterials
, vol.25
, Issue.18
, pp. 4273-4278
-
-
Yuan, Y.1
Zhang, P.2
Yang, Y.3
Wang, X.4
Gu, X.5
-
4
-
-
0038614699
-
Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps
-
DOI 10.1089/107632703322066606
-
Yu X, Bellamkonda RV. Tissue engineered scaffolds are effective alternatives to autografts in bridging peripheral nerve gaps in rodents. Tissue Eng. 2003;9:421-30. (Pubitemid 36736125)
-
(2003)
Tissue Engineering
, vol.9
, Issue.3
, pp. 421-430
-
-
Yu, X.1
Bellamkonda, R.V.2
-
5
-
-
33750989896
-
Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering
-
DOI 10.1016/j.biomaterials.2006.08.044, PII S0142961206007642
-
Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Hornet MK, Forsythe JS. Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials. 2007;28:441-9. (Pubitemid 44740107)
-
(2007)
Biomaterials
, vol.28
, Issue.3
, pp. 441-449
-
-
Crompton, K.E.1
Goud, J.D.2
Bellamkonda, R.V.3
Gengenbach, T.R.4
Finkelstein, D.I.5
Horne, M.K.6
Forsythe, J.S.7
-
6
-
-
39049115589
-
Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit
-
Oh SH, Kim JH, Song KS, Jeon BH, Yoon JH, Seo TB, Namgung U, Lee IW, Lee JH. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials. 2008;29:1601-9.
-
(2008)
Biomaterials
, vol.29
, pp. 1601-1609
-
-
Oh, S.H.1
Kim, J.H.2
Song, K.S.3
Jeon, B.H.4
Yoon, J.H.5
Seo, T.B.6
Namgung, U.7
Lee, I.W.8
Lee, J.H.9
-
7
-
-
0036166158
-
Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications
-
DOI 10.1002/1616-3028(20020101)12:1<33::AID-ADFM33>3.0.CO;2-E
-
Rivers TJ, Hudson TW, Schmidt CE. Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv Funct Mater. 2002;12:33-7. (Pubitemid 34125070)
-
(2002)
Advanced Functional Materials
, vol.12
, Issue.1
, pp. 33-37
-
-
Rivers, T.J.1
Hudson, T.W.2
Schmidt, C.E.3
-
8
-
-
76249097337
-
Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration
-
doi:10.1186/1423-0127-16-108
-
Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci. 2009. doi:10.1186/1423-0127-16-108.
-
(2009)
J Biomed Sci
-
-
Subramanian, A.1
Krishnan, U.M.2
Sethuraman, S.3
-
9
-
-
4744371904
-
Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole
-
DOI 10.1016/j.biomaterials.2004.04.040, PII S0142961204004065
-
Verreck G, Chun I, Li Y, Kataria R, Zhang Q, Rosenblatt J, Decorte A, Heymans K, Adriaensen J, Bruining M, Remoortere M, Borghys H, Meert T, Peeters J, Brewster ME. Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005;26: 1307-15. (Pubitemid 39314505)
-
(2005)
Biomaterials
, vol.26
, Issue.11
, pp. 1307-1315
-
-
Verreck, G.1
Chun, I.2
Li, Y.3
Kataria, R.4
Zhang, Q.5
Rosenblatt, J.6
Decorte, A.7
Heymans, K.8
Adriaensen, J.9
Bruining, M.10
Van Remoortere, M.11
Borghys, H.12
Meert, T.13
Peeters, J.14
Brewster, M.E.15
-
10
-
-
33646013600
-
Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels
-
Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800-9.
-
(2006)
Biomaterials
, vol.27
, pp. 3800-3809
-
-
Wen, X.1
Tresco, P.A.2
-
11
-
-
10044289544
-
Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering
-
DOI 10.1016/j.biomaterials.2004.06.051, PII S0142961204008567
-
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26: 2603-10. (Pubitemid 39600712)
-
(2005)
Biomaterials
, vol.26
, Issue.15
, pp. 2603-2610
-
-
Yang, F.1
Murugan, R.2
Wang, S.3
Ramakrishna, S.4
-
12
-
-
0003422388
-
-
New York: W.H. Freeman and Company
-
Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell JE. Molecular cell biology. New York: W.H. Freeman and Company; 2002.
-
(2002)
Molecular Cell Biology
-
-
Lodish, H.1
Berk, A.2
Zipursky, L.S.3
Matsudaira, P.4
Baltimore, D.5
Darnell, J.E.6
-
13
-
-
80052768917
-
Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: Effects of topography, mechanical, and chemical stimuli
-
Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S. Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules. 2011;12:3156-65.
-
(2011)
Biomacromolecules
, vol.12
, pp. 3156-3165
-
-
Kuppan, P.1
Vasanthan, K.S.2
Sundaramurthi, D.3
Krishnan, U.M.4
Sethuraman, S.5
-
14
-
-
77954543126
-
Electrospinning of PLGA/PCL blends for tissue engineering and their biocompatibility
-
Hiep NT, Lee B-T. Electrospinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J Mater Sci Mater Med. 2010;21:1969-78.
-
(2010)
J Mater Sci Mater Med
, vol.21
, pp. 1969-1978
-
-
Hiep, N.T.1
Lee, B.-T.2
-
15
-
-
36549084632
-
The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation
-
DOI 10.1016/j.biomaterials.2007.10.025, PII S0142961207008319
-
Chew SY, Mi R, Hoke A, Leong KW. The effect of the alignment of electrospun fibrous scaffolds on schwann cell maturation. Biomaterials. 2008;29:653-61. (Pubitemid 350181041)
-
(2008)
Biomaterials
, vol.29
, Issue.6
, pp. 653-661
-
-
Chew, S.Y.1
Mi, R.2
Hoke, A.3
Leong, K.W.4
-
16
-
-
17844398222
-
Electrospinning of chitosan dissolved in concentrated acetic acid solution
-
DOI 10.1016/j.biomaterials.2005.01.066
-
Geng X, Kwon OH, Jang J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials. 2005;26: 5427-32. (Pubitemid 40592132)
-
(2005)
Biomaterials
, vol.26
, Issue.27
, pp. 5427-5432
-
-
Geng, X.1
Kwon, O.-H.2
Jang, J.3
-
17
-
-
43149106918
-
The role of aligned polymer fiber-based constructs in the bridging of lone peripheral nerve gaps
-
Kim Y-T, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of lone peripheral nerve gaps. Biomaterials. 2008;29:3117-27.
-
(2008)
Biomaterials
, vol.29
, pp. 3117-3127
-
-
Kim, Y.-T.1
Haftel, V.K.2
Kumar, S.3
Bellamkonda, R.V.4
-
18
-
-
34147094231
-
Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend
-
DOI 10.1016/j.biomaterials.2007.03.009, PII S0142961207002256
-
Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, Mey J. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-e-caprolactone and a collagen/poly-e-caprolactone blend. Biomaterials. 2007;28:3012-25. (Pubitemid 46560871)
-
(2007)
Biomaterials
, vol.28
, Issue.19
, pp. 3012-3025
-
-
Schnell, E.1
Klinkhammer, K.2
Balzer, S.3
Brook, G.4
Klee, D.5
Dalton, P.6
Mey, J.7
-
19
-
-
33745685312
-
A review on electrospinning design and nanofibre assemblies
-
DOI 10.1088/0957-4484/17/14/R01, PII S0957448406222918, R01
-
Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;. doi:10.1088/0957-4484/17/14/R01. (Pubitemid 43996759)
-
(2006)
Nanotechnology
, vol.17
, Issue.14
-
-
Teo, W.E.1
Ramakrishna, S.2
-
20
-
-
79953696249
-
Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration
-
doi:10.1088/1748-6041/6/2/025004
-
Subramanian A, Krishnan UM, Sethuraman S. Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed Mater. 2011. doi:10.1088/1748-6041/6/2/025004.
-
(2011)
Biomed Mater
-
-
Subramanian, A.1
Krishnan, U.M.2
Sethuraman, S.3
-
21
-
-
18744390482
-
Porous tubular structures with controlled fibre orientation using a modified electrospinning method
-
DOI 10.1088/0957-4484/16/6/049, PII S0957448405907873
-
Teo WE, Kotaki M, Mo XM, Ramakrishna S. Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology. 2005. doi:10.1088/0957-4484/16/6/049. (Pubitemid 40666603)
-
(2005)
Nanotechnology
, vol.16
, Issue.6
, pp. 918-924
-
-
Teo, W.E.1
Kotaki, M.2
Mo, X.M.3
Ramakrishna, S.4
-
22
-
-
1842854152
-
In vivo studies of polypyrrole/peptide coated neural probes
-
DOI 10.1016/S0142-9612(02)00415-5, PII S0142961202004155
-
Cui X, Wiler J, Dzaman M, Altschuler RA, Martin DC. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials. 2003;24:777-87. (Pubitemid 35449830)
-
(2003)
Biomaterials
, vol.24
, Issue.5
, pp. 777-787
-
-
Cui, X.1
Wiler, J.2
Dzaman, M.3
Altschuler, R.A.4
Martin, D.C.5
-
23
-
-
31044434427
-
Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications
-
DOI 10.1016/j.biomaterials.2005.11.037, PII S0142961205010628
-
Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI. Electrospinning polyaniline-contained gelatine nanofibers for tissue engineering applications. Biomaterials. 2006;27:2705-15. (Pubitemid 43122074)
-
(2006)
Biomaterials
, vol.27
, Issue.13
, pp. 2705-2715
-
-
Li, M.1
Guo, Y.2
Wei, Y.3
MacDiarmid, A.G.4
Lelkes, P.I.5
-
24
-
-
33845909011
-
Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells
-
DOI 10.1016/j.biomaterials.2006.11.026, PII S0142961206009975
-
Richardson-Burns SM, Hendricks JL, Foster B, Povlich LK, Kim D, Martin DC. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials. 2007;28:1539-52. (Pubitemid 46027252)
-
(2007)
Biomaterials
, vol.28
, Issue.8
, pp. 1539-1552
-
-
Richardson-Burns, S.M.1
Hendricks, J.L.2
Foster, B.3
Povlich, L.K.4
Kim, D.-H.5
Martin, D.C.6
-
25
-
-
33845721714
-
Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration
-
DOI 10.1111/j.1525-1594.2007.00335.x
-
Zhang Z, Rouabhia M, Wang Z, Roberge C, Shi G, Roche P, Li J, Dao LH. Electrically conductive biodegradable polymer composite for nerve regeneration: electrically-stimulated neurite outgrowth and axon regeneration. Artif Org. 2007;31:13-22. (Pubitemid 46011016)
-
(2007)
Artificial Organs
, vol.31
, Issue.1
, pp. 13-22
-
-
Zhang, Z.1
Rouabhia, M.2
Wang, Z.3
Roberge, C.4
Shi, G.5
Roche, P.6
Li, J.7
Dao, L.H.8
-
26
-
-
0020321171
-
Orientation of neurite growth by extracellular electric fields
-
Patel N, Poo M-M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982;2:483-96. (Pubitemid 12040435)
-
(1982)
Journal of Neuroscience
, vol.2
, Issue.4
, pp. 483-496
-
-
Patel, N.1
Poo, M.M.2
-
27
-
-
0033996746
-
Synthesis and characterization of polypyrrole-hyaluronic acid composite biomaterials for tissue engineering applications
-
DOI 10.1002/(SICI)1097-4636(20000615)50:4<574::AID-JBM13>3.0.CO;2-I
-
Collier JH, Camp JP, Hudson TW, Schmidt CE. Synthesis and characterization of polypyrrole/hyaluronic acid composite biomaterials for tissue engineering. J Biomed Mater Res. 2000;50: 574-84. (Pubitemid 30225384)
-
(2000)
Journal of Biomedical Materials Research
, vol.50
, Issue.4
, pp. 574-584
-
-
Collier, J.H.1
Camp, J.P.2
Hudson, T.W.3
Schmidt, C.E.4
-
28
-
-
33745607919
-
Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion
-
DOI 10.1021/bm060220q
-
Lee JW, Serna F, Nickels J, Schmidt CE. Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules. 2006;7:1692-5. (Pubitemid 43985085)
-
(2006)
Biomacromolecules
, vol.7
, Issue.6
, pp. 1692-1695
-
-
Lee, J.-W.1
Serna, F.2
Nickels, J.3
Schmidt, C.E.4
-
29
-
-
0035098601
-
Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials
-
DOI 10.1016/S0142-9612(00)00344-6, PII S0142961200003446
-
Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials. 2001;22:1055-64. (Pubitemid 32229931)
-
(2001)
Biomaterials
, vol.22
, Issue.10
, pp. 1055-1064
-
-
Kotwal, A.1
Schmidt, C.E.2
-
30
-
-
0033800623
-
Biocompatibility of electroactive polymers in tissues
-
Kamalesh S, Tan P, Wang J, Lee T, Kang ET, Wang CH. Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res. 2000;52:467-78.
-
(2000)
J Biomed Mater Res
, vol.52
, pp. 467-478
-
-
Kamalesh, S.1
Tan, P.2
Wang, J.3
Lee, T.4
Kang, E.T.5
Wang, C.H.6
-
31
-
-
0033137774
-
In vivo tissue response to polyaniline
-
Wang CH, Dong YQ, Sengothi K, Tan KL, Kang ET. In vivo tissue response to polyaniline. Synth Met. 1999;102:1313-4.
-
(1999)
Synth Met
, vol.102
, pp. 1313-1314
-
-
Wang, C.H.1
Dong, Y.Q.2
Sengothi, K.3
Tan, K.L.4
Kang, E.T.5
-
32
-
-
33846583727
-
Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes
-
DOI 10.1016/j.bios.2006.08.011, PII S0956566306003630
-
Widge AS, Jeffries El M, Cui X, Lagenaur XY, Matsuoka Y. Self-assembled monolayers of polythiophene conductive polymers improve biocompatibility and electrical impedance of neural electrodes. Biosens Bioelectrons. 2007;22:1723-32. (Pubitemid 46185972)
-
(2007)
Biosensors and Bioelectronics
, vol.22
, Issue.8
, pp. 1723-1732
-
-
Widge, A.S.1
Jeffries-El, M.2
Cui, X.3
Lagenaur, C.F.4
Matsuoka, Y.5
-
33
-
-
0037450268
-
Artificial muscles with tactile sensitivity
-
Otero TF, Cortes MT. Artificial muscles with tactile sensitivity. Adv Mater. 2003;15:279-82.
-
(2003)
Adv Mater
, vol.15
, pp. 279-282
-
-
Otero, T.F.1
Cortes, M.T.2
-
34
-
-
32544445559
-
Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties
-
DOI 10.1016/j.polymer.2006.01.032, PII S0032386106000504
-
Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: electrical and morphological properties. Polymer. 2006;47:1597-603. (Pubitemid 43238201)
-
(2006)
Polymer
, vol.47
, Issue.5
, pp. 1597-1603
-
-
Chronakis, I.S.1
Grapenson, S.2
Jakob, A.3
-
35
-
-
0035867428
-
Electrostatically-generated nanofibers of electronic polymers
-
DOI 10.1016/S0379-6779(00)00597-X, PII S037967790000597X
-
MacDiarmid AG, Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M. Electrostatically-generated nanofibers of electronic polymers. Synth Met. 2001;119:27-30. (Pubitemid 32475175)
-
(2001)
Synthetic Metals
, vol.119
, Issue.1-3
, pp. 27-30
-
-
MacDiarmid, A.G.1
Jones Jr., W.E.2
Norris, I.D.3
Gao, J.4
Johnson Jr., A.T.5
Pinto, N.J.6
Hone, J.7
Han, B.8
Ko, F.K.9
Okuzaki, H.10
Llaguno, M.11
-
36
-
-
85080579815
-
-
Thesis, Doctor of Philosophy, Drexel University
-
El-Aufy A. Thesis, Doctor of Philosophy, Drexel University; 2004.
-
(2004)
-
-
El-Aufy, A.1
-
38
-
-
77954135165
-
Fabrication & characterization of chitosan-gelatin blend nanofibers for skin tissue engineering
-
Dhandayuthapani B, Krishnan UM, Sethuraman S. Fabrication & characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater. 2010; 94B:264-72.
-
(2010)
J Biomed Mater Res B Appl Biomater
, vol.94 B
, pp. 264-272
-
-
Dhandayuthapani, B.1
Krishnan, U.M.2
Sethuraman, S.3
-
39
-
-
52049100789
-
Electrospun poly(e-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
-
Mobarakeh LG, Prabhakaran MP, Morshed M. Nasr-Esfahani MH, Ramakrishna S. Electrospun poly(e-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532-9.
-
(2008)
Biomaterials
, vol.29
, pp. 4532-4539
-
-
Mobarakeh, L.G.1
Prabhakaran, M.P.2
Morshed, M.3
Nasr-Esfahani, M.H.4
Ramakrishna, S.5
-
40
-
-
0346500607
-
Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering
-
DOI 10.1016/j.biomaterials.2003.08.062
-
Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891-900. (Pubitemid 38102264)
-
(2004)
Biomaterials
, vol.25
, Issue.10
, pp. 1891-1900
-
-
Yang, F.1
Murugan, R.2
Ramakrishna, S.3
Wang, X.4
Ma, Y.-X.5
Wang, S.6
-
41
-
-
0742272494
-
Novel biodegradable electrospun membrane: Scaffold for tissue engineering
-
DOI 10.1016/j.biomaterials.2003.09.043
-
Bhattarai SR, Bhattarai N, Yi HK, Hwang PH, Cha DI, Kim HY. Novel biodegradable electrospun membrane: scaffold for tissue engineering. Biomaterials. 2004;25:2595-602. (Pubitemid 38147450)
-
(2004)
Biomaterials
, vol.25
, Issue.13
, pp. 2595-2602
-
-
Bhattarai, S.R.1
Bhattarai, N.2
Yi, H.K.3
Hwang, P.H.4
Cha, D.I.5
Kim, H.Y.6
-
42
-
-
0037097175
-
Electrospun nanofibrous structure: A novel scaffold for tissue engineering
-
DOI 10.1002/jbm.10167
-
Li WJ, Laurencin CT, Caterson EJ, Tuan R, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613-21. (Pubitemid 34492600)
-
(2002)
Journal of Biomedical Materials Research
, vol.60
, Issue.4
, pp. 613-621
-
-
Li, W.-J.1
Laurencin, C.T.2
Caterson, E.J.3
Tuan, R.S.4
Ko, F.K.5
-
43
-
-
0036010297
-
Development of a bioartificial nerve graft. II. Nerve regeneration in vitro
-
DOI 10.1021/bp020280h
-
Rutkowski GE, Heath CA. Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol Prog. 2002;18: 373-9. (Pubitemid 34294250)
-
(2002)
Biotechnology Progress
, vol.18
, Issue.2
, pp. 373-379
-
-
Rutkowski, G.E.1
Heath, C.A.2
-
44
-
-
17644392090
-
Development of fibrous biodegradable polymer conduits for guided nerve regeneration
-
DOI 10.1007/s10856-005-0637-6
-
Bini TB, Gao S, Wang S, Ramakrishna S. Development of fibrous biodegradable polymer conduits for guided nerve regeneration. J Mater Sci Mater Med. 2005;16:367-75. (Pubitemid 40558518)
-
(2005)
Journal of Materials Science: Materials in Medicine
, vol.16
, Issue.4
, pp. 367-375
-
-
Bini, T.B.1
Gao, S.2
Wang, S.3
Ramakrishna, S.4
-
45
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529-43.
-
(2000)
Biomaterials
, vol.21
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
46
-
-
0035105945
-
Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures
-
DOI 10.1016/S0142-9612(00)00350-1, PII S0142961200003501
-
Balgude AP, Yu X, Szymanski A, Bellamkonda RV. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. 2001;22:1077-84. (Pubitemid 32229933)
-
(2001)
Biomaterials
, vol.22
, Issue.10
, pp. 1077-1084
-
-
Balgude, A.P.1
Yu, X.2
Szymanski, A.3
Bellamkonda, R.V.4
-
47
-
-
69049088741
-
Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering
-
Gupta D, Venugopal J, Prabhakaran MP, Giri Dev VR, Low S, Choon AT, Ramakrishan S. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 2009;5:2560-9.
-
(2009)
Acta Biomater
, vol.5
, pp. 2560-2569
-
-
Gupta, D.1
Venugopal, J.2
Prabhakaran, M.P.3
Giri Dev, V.R.4
Low, S.5
Choon, A.T.6
Ramakrishan, S.7
-
49
-
-
70450164407
-
Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration
-
Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A. 2009;91:994-1005.
-
(2009)
J Biomed Mater Res A
, vol.91
, pp. 994-1005
-
-
Wang, W.1
Itoh, S.2
Konno, K.3
Kikkawa, T.4
Ichinose, S.5
Sakai, K.6
Ohkuma, T.7
Watabe, K.8
-
50
-
-
4744359026
-
Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast
-
DOI 10.1016/j.biomaterials.2004.04.037, PII S0142961204004089
-
Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005; 26:1261-70. (Pubitemid 39314500)
-
(2005)
Biomaterials
, vol.26
, Issue.11
, pp. 1261-1270
-
-
Lee, C.H.1
Shin, H.J.2
Cho, I.H.3
Kang, Y.-M.4
Kim, I.A.5
Park, K.-D.6
Shin, J.-W.7
-
51
-
-
34249913695
-
In vitro biocompatability of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds
-
DOI 10.1021/bm061152a
-
Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P. In vitro biocompatibility of Schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587-94. (Pubitemid 46865132)
-
(2007)
Biomacromolecules
, vol.8
, Issue.5
, pp. 1587-1594
-
-
Sangsanoh, P.1
Waleetomcheepsawat, S.2
Suwantong, O.3
Wutticharoenmongkol, P.4
Weeranantanapan, O.5
Chuenjitbuntaworn, B.6
Cheepsunthom, P.7
Pavasant, P.8
Supaphol, P.9
|