-
1
-
-
84888192566
-
Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry
-
Hare, D. J., Grubman, A., Ryan, T. M., Lothian, A., Liddell, J. R., Grimm, R., Matsuda, T., Doble, P. A., Cherny, R. A., Bush, A. I., White, A. R., Masters, C. L., and Roberts, B. R. (2013) Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry. Metallomics 5, 1656 –1662
-
(2013)
Metallomics
, vol.5
, pp. 1656-1662
-
-
Hare, D.J.1
Grubman, A.2
Ryan, T.M.3
Lothian, A.4
Liddell, J.R.5
Grimm, R.6
Matsuda, T.7
Doble, P.A.8
Cherny, R.A.9
Bush, A.I.10
White, A.R.11
Masters, C.L.12
Roberts, B.R.13
-
2
-
-
84856484022
-
Metals in biology: Defining metalloproteomes
-
Yannone, S. M., Hartung, S., Menon, A. L., Adams, M. W., and Tainer, J. A. (2012) Metals in biology: defining metalloproteomes. Curr. Opin. Biotech-nol. 23, 89 –95
-
(2012)
Curr. Opin. Biotech-nol.
, vol.23
, pp. 89-95
-
-
Yannone, S.M.1
Hartung, S.2
Menon, A.L.3
Adams, M.W.4
Tainer, J.A.5
-
3
-
-
77955516282
-
Microbial metalloproteomes are largely uncharacter-ized
-
Cvetkovic, A., Menon, A. L., Thorgersen, M. P., Scott, J. W., Poole, F. L., 2nd, Jenney, F. E., Jr, Lancaster, W. A., Praissman, J. L., Shanmukh, S., Vaccaro, B. J., Trauger, S. A., Kalisiak, E., Apon, J. V., Siuzdak, G., Yannone, S. M., et al. (2010) Microbial metalloproteomes are largely uncharacter-ized. Nature 466, 779 –782
-
(2010)
Nature
, vol.466
, pp. 779-782
-
-
Cvetkovic, A.1
Menon, A.L.2
Thorgersen, M.P.3
Scott, J.W.4
Poole, F.L.5
Jenney, F.E.6
Lancaster, W.A.7
Praissman, J.L.8
Shanmukh, S.9
Vaccaro, B.J.10
Trauger, S.A.11
Kalisiak, E.12
Apon, J.V.13
Siuzdak, G.14
Yannone, S.M.15
-
4
-
-
83655212423
-
Eukaryotic DNA polymerases require an iron–sulfur cluster for the formation of active complexes
-
Netz, D. J., Stith, C. M., Stümpfig, M., Köpf, G., Vogel, D., Genau, H. M., Stodola, J. L., Lill, R., Burgers, P. M., and Pierik, A. J. (2011) Eukaryotic DNA polymerases require an iron–sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8, 125–132
-
(2011)
Nat. Chem. Biol.
, vol.8
, pp. 125-132
-
-
Netz, D.J.1
Stith, C.M.2
Stümpfig, M.3
Köpf, G.4
Vogel, D.5
Genau, H.M.6
Stodola, J.L.7
Lill, R.8
Burgers, P.M.9
Pierik, A.J.10
-
5
-
-
84863747679
-
MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity
-
Stehling, O., Vashisht, A. A., Mascarenhas, J., Jonsson, Z. O., Sharma, T., Netz, D. J., Pierik, A. J., Wohlschlegel, J. A., and Lill, R. (2012) MMS19 assembles iron–sulfur proteins required for DNA metabolism and genomic integrity. Science 337, 195–199
-
(2012)
Science
, vol.337
, pp. 195-199
-
-
Stehling, O.1
Vashisht, A.A.2
Mascarenhas, J.3
Jonsson, Z.O.4
Sharma, T.5
Netz, D.J.6
Pierik, A.J.7
Wohlschlegel, J.A.8
Lill, R.9
-
6
-
-
84990848528
-
Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis
-
Xue, X., Ramakrishnan, S. K., Weisz, K., Triner, D., Xie, L., Attili, D., Pant, A., Gyrffy, B., Zhan, M., Carter-Su, C., Hardiman, K. M., Wang, T. D., Dame, M. K., Varani, J., Brenner, D., Fearon, E. R., and Shah, Y. M. (2016) Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24, 447– 461
-
(2016)
Cell Metab.
, vol.24
, pp. 447-461
-
-
Xue, X.1
Ramakrishnan, S.K.2
Weisz, K.3
Triner, D.4
Xie, L.5
Attili, D.6
Pant, A.7
Gyrffy, B.8
Zhan, M.9
Carter-Su, C.10
Hardiman, K.M.11
Wang, T.D.12
Dame, M.K.13
Varani, J.14
Brenner, D.15
Fearon, E.R.16
Shah, Y.M.17
-
7
-
-
68949170348
-
Metalloproteins and metal sensing
-
Waldron, K. J., Rutherford, J. C., Ford, D., and Robinson, N. J. (2009) Metalloproteins and metal sensing. Nature 460, 823– 830
-
(2009)
Nature
, vol.460
, pp. 823-830
-
-
Waldron, K.J.1
Rutherford, J.C.2
Ford, D.3
Robinson, N.J.4
-
8
-
-
0030910597
-
A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport
-
Lin, S. J., Pufahl, R. A., Dancis, A., O’Halloran, T. V., and Culotta, V. C. (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 9215-9220
-
-
Lin, S.J.1
Pufahl, R.A.2
Dancis, A.3
O’Halloran, T.V.4
Culotta, V.C.5
-
9
-
-
0037474241
-
Characterization of the zinc-binding site of the histidine-proline-rich glycoprotein associated with rabbit skeletal muscle AMP deaminase
-
Mangani, S., Meyer-Klaucke, W., Moir, A. J., Ranieri-Raggi, M., Martini, D., and Raggi, A. (2003) Characterization of the zinc-binding site of the histidine-proline-rich glycoprotein associated with rabbit skeletal muscle AMP deaminase. J. Biol. Chem. 278, 3176 –3184
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 3176-3184
-
-
Mangani, S.1
Meyer-Klaucke, W.2
Moir, A.J.3
Ranieri-Raggi, M.4
Martini, D.5
Raggi, A.6
-
10
-
-
1842366025
-
Metal ion chaperone function of the soluble Cu(I) receptor Atx1 (see comments)
-
Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E., and O’Halloran, T. V. (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1 (see comments). Science 278, 853– 856
-
(1997)
Science
, vol.278
, pp. 853-856
-
-
Pufahl, R.A.1
Singer, C.P.2
Peariso, K.L.3
Lin, S.J.4
Schmidt, P.J.5
Fahrni, C.J.6
Culotta, V.C.7
Penner-Hahn, J.E.8
O’Halloran, T.V.9
-
11
-
-
45849123222
-
A cytosolic iron chaperone that delivers iron to ferritin
-
Shi, H., Bencze, K. Z., Stemmler, T. L., and Philpott, C. C. (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207–1210
-
(2008)
Science
, vol.320
, pp. 1207-1210
-
-
Shi, H.1
Bencze, K.Z.2
Stemmler, T.L.3
Philpott, C.C.4
-
12
-
-
77955110561
-
Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1’s multifunctional regulatory roles
-
Chaudhury, A., Chander, P., and Howe, P. H. (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16, 1449 –1462
-
(2010)
RNA
, vol.16
, pp. 1449-1462
-
-
Chaudhury, A.1
Chander, P.2
Howe, P.H.3
-
13
-
-
0033609880
-
A set of highly conserved RNA-binding proteins, CP-1 and CP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its in-tron-containing paralog
-
Makeyev, A. V., Chkheidze, A. N., and Liebhaber, S. A. (1999) A set of highly conserved RNA-binding proteins, CP-1 and CP-2, implicated in mRNA stabilization, are coexpressed from an intronless gene and its in-tron-containing paralog. J. Biol. Chem. 274, 24849 –24857
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 24849-24857
-
-
Makeyev, A.V.1
Chkheidze, A.N.2
Liebhaber, S.A.3
-
14
-
-
0036223676
-
The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms
-
Makeyev, A. V., and Liebhaber, S. A. (2002) The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8, 265–278
-
(2002)
RNA
, vol.8
, pp. 265-278
-
-
Makeyev, A.V.1
Liebhaber, S.A.2
-
15
-
-
4344575965
-
Control of mRNA translation and stability in haematopoietic cells: The function of hnRNPs K and E1/E2
-
Ostareck-Lederer, A., and Ostareck, D. H. (2004) Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1/E2. Biol. Cell 96, 407– 411
-
(2004)
Biol. Cell
, vol.96
, pp. 407-411
-
-
Ostareck-Lederer, A.1
Ostareck, D.H.2
-
16
-
-
84863975738
-
Precision mechanics with multifunctional tools: How hnRNP K and hnRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoiesis
-
Ostareck-Lederer, A., and Ostareck, D. H. (2012) Precision mechanics with multifunctional tools: how hnRNP K and hnRNPs E1/E2 contribute to post-transcriptional control of gene expression in hematopoiesis. Curr. Protein Pept. Sci. 13, 391– 400
-
(2012)
Curr. Protein Pept. Sci.
, vol.13
, pp. 391-400
-
-
Ostareck-Lederer, A.1
Ostareck, D.H.2
-
17
-
-
77953810574
-
Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage
-
Arosio, P., and Levi, S. (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta 1800, 783–792
-
(2010)
Biochim. Biophys. Acta
, vol.1800
, pp. 783-792
-
-
Arosio, P.1
Levi, S.2
-
18
-
-
0031570288
-
Fluorescence analysis of the labile iron pool of mammalian cells
-
Epsztejn, S., Kakhlon, O., Glickstein, H., Breuer, W., and Cabantchik, I. (1997) Fluorescence analysis of the labile iron pool of mammalian cells. Anal. Biochem. 248, 31– 40
-
(1997)
Anal. Biochem.
, vol.248
, pp. 31-40
-
-
Epsztejn, S.1
Kakhlon, O.2
Glickstein, H.3
Breuer, W.4
Cabantchik, I.5
-
19
-
-
84901840956
-
Iron chaperones PCBP1 and PCBP2 mediate the metallation of the di-nuclear iron enzyme deoxyhypusine hydroxylase
-
Frey, A. G., Nandal, A., Park, J. H., Smith, P. M., Yabe, T., Ryu, M. S., Ghosh, M. C., Lee, J., Rouault, T. A., Park, M. H., and Philpott, C. C. (2014) Iron chaperones PCBP1 and PCBP2 mediate the metallation of the di-nuclear iron enzyme deoxyhypusine hydroxylase. Proc. Natl. Acad. Sci. U.S.A. 111, 8031– 8036
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8031-8036
-
-
Frey, A.G.1
Nandal, A.2
Park, J.H.3
Smith, P.M.4
Yabe, T.5
Ryu, M.S.6
Ghosh, M.C.7
Lee, J.8
Rouault, T.A.9
Park, M.H.10
Philpott, C.C.11
-
20
-
-
80455143216
-
Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2
-
Nandal, A., Ruiz, J. C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R. A., Stemmler, T. L., Bruick, R. K., and Philpott, C. C. (2011) Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 14, 647– 657
-
(2011)
Cell Metab.
, vol.14
, pp. 647-657
-
-
Nandal, A.1
Ruiz, J.C.2
Subramanian, P.3
Ghimire-Rijal, S.4
Sinnamon, R.A.5
Stemmler, T.L.6
Bruick, R.K.7
Philpott, C.C.8
-
21
-
-
0030755366
-
Cloning and characterization of a mammalian proton-coupled metal-ion transporter
-
Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L., and Hediger, M. A. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482– 488
-
(1997)
Nature
, vol.388
, pp. 482-488
-
-
Gunshin, H.1
Mackenzie, B.2
Berger, U.V.3
Gunshin, Y.4
Romero, M.F.5
Boron, W.F.6
Nussberger, S.7
Gollan, J.L.8
Hediger, M.A.9
-
22
-
-
84867249792
-
ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading
-
Wang, C. Y., Jenkitkasemwong, S., Duarte, S., Sparkman, B. K., Shawki, A., Mackenzie, B., and Knutson, M. D. (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J. Biol. Chem. 287, 34032–34043
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 34032-34043
-
-
Wang, C.Y.1
Jenkitkasemwong, S.2
Duarte, S.3
Sparkman, B.K.4
Shawki, A.5
Mackenzie, B.6
Knutson, M.D.7
-
23
-
-
33748798494
-
Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells
-
Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D., and Cousins, R. J. (2006) Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. U.S.A. 103, 13612–13617
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 13612-13617
-
-
Liuzzi, J.P.1
Aydemir, F.2
Nam, H.3
Knutson, M.D.4
Cousins, R.J.5
-
24
-
-
84904693203
-
Chaperone protein involved in transmembrane transport of iron
-
Yanatori, I., Yasui, Y., Tabuchi, M., and Kishi, F. (2014) Chaperone protein involved in transmembrane transport of iron. Biochem. J. 462, 25–37
-
(2014)
Biochem. J.
, vol.462
, pp. 25-37
-
-
Yanatori, I.1
Yasui, Y.2
Tabuchi, M.3
Kishi, F.4
-
25
-
-
85018978125
-
PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis
-
Ryu, M. S., Zhang, D., Protchenko, O., Shakoury-Elizeh, M., and Philpott, C. C. (2017) PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J. Clin. Invest. 127, 1786 –1797
-
(2017)
J. Clin. Invest.
, vol.127
, pp. 1786-1797
-
-
Ryu, M.S.1
Zhang, D.2
Protchenko, O.3
Shakoury-Elizeh, M.4
Philpott, C.C.5
-
26
-
-
0034733635
-
A novel mammalian iron-regulated protein involved in intracellular iron metabolism
-
Abboud, S., and Haile, D. J. (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 19906-19912
-
-
Abboud, S.1
Haile, D.J.2
-
27
-
-
0034677467
-
Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter
-
Donovan, A., Brownlie, A., Zhou, Y., Shepard, J., Pratt, S. J., Moynihan, J., Paw, B. H., Drejer, A., Barut, B., Zapata, A., Law, T. C., Brugnara, C., Lux, S. E., Pinkus, G. S., Pinkus, J. L., et al. (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776 –781
-
(2000)
Nature
, vol.403
, pp. 776-781
-
-
Donovan, A.1
Brownlie, A.2
Zhou, Y.3
Shepard, J.4
Pratt, S.J.5
Moynihan, J.6
Paw, B.H.7
Drejer, A.8
Barut, B.9
Zapata, A.10
Law, T.C.11
Brugnara, C.12
Lux, S.E.13
Pinkus, G.S.14
Pinkus, J.L.15
-
28
-
-
0033861745
-
A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation
-
McKie, A. T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T. J., Farzaneh, F., Hediger, M. A., Hentze, M. W., and Simpson, R. J. (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299 –309
-
(2000)
Mol. Cell
, vol.5
, pp. 299-309
-
-
McKie, A.T.1
Marciani, P.2
Rolfs, A.3
Brennan, K.4
Wehr, K.5
Barrow, D.6
Miret, S.7
Bomford, A.8
Peters, T.J.9
Farzaneh, F.10
Hediger, M.A.11
Hentze, M.W.12
Simpson, R.J.13
-
29
-
-
84982161525
-
Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2
-
Yanatori, I., Richardson, D. R., Imada, K., and Kishi, F. (2016) Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2. J. Biol. Chem. 291, 17303–17318
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 17303-17318
-
-
Yanatori, I.1
Richardson, D.R.2
Imada, K.3
Kishi, F.4
-
30
-
-
85017401907
-
Ferritin, cellular iron storage and regulation
-
Arosio, P., Elia, L., and Poli, M. (2017) Ferritin, cellular iron storage and regulation. IUBMB Life 69, 414 – 422
-
(2017)
IUBMB Life
, vol.69
, pp. 414-422
-
-
Arosio, P.1
Elia, L.2
Poli, M.3
-
31
-
-
85007236078
-
Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology
-
Carmona, F., Poli, M., Bertuzzi, M., Gianoncelli, A., Gangemi, F., and Arosio, P. (2017) Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology. Biochim. Biophys. Acta 1861, 522–532
-
(2017)
Biochim. Biophys. Acta
, vol.1861
, pp. 522-532
-
-
Carmona, F.1
Poli, M.2
Bertuzzi, M.3
Gianoncelli, A.4
Gangemi, F.5
Arosio, P.6
-
32
-
-
84879057526
-
Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin
-
Leidgens, S., Bullough, K. Z., Shi, H., Li, F., Shakoury-Elizeh, M., Yabe, T., Subramanian, P., Hsu, E., Natarajan, N., Nandal, A., Stemmler, T. L., and Philpott, C. C. (2013) Each member of the poly-r(C)-binding protein 1 (PCBP) family exhibits iron chaperone activity toward ferritin. J. Biol. Chem. 288, 17791–17802
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 17791-17802
-
-
Leidgens, S.1
Bullough, K.Z.2
Shi, H.3
Li, F.4
Shakoury-Elizeh, M.5
Yabe, T.6
Subramanian, P.7
Hsu, E.8
Natarajan, N.9
Nandal, A.10
Stemmler, T.L.11
Philpott, C.C.12
-
33
-
-
84907519839
-
The hypusine-containing translation factor eIF5A
-
Dever, T. E., Gutierrez, E., and Shin, B. S. (2014) The hypusine-containing translation factor eIF5A. Crit. Rev. Biochem. Mol. Biol. 49, 413– 425
-
(2014)
Crit. Rev. Biochem. Mol. Biol.
, vol.49
, pp. 413-425
-
-
Dever, T.E.1
Gutierrez, E.2
Shin, B.S.3
-
34
-
-
70349266069
-
Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center
-
Vu, V. V., Emerson, J. P., Martinho, M., Kim, Y. S., Münck, E., Park, M. H., and Que, L., Jr. (2009) Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O2 with a nonheme diiron center. Proc. Natl. Acad. Sci. U.S.A. 106, 14814 –14819
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 14814-14819
-
-
Vu, V.V.1
Emerson, J.P.2
Martinho, M.3
Kim, Y.S.4
Münck, E.5
Park, M.H.6
Que, L.7
-
35
-
-
1542378704
-
Dioxygen activation at mononuclear nonheme iron active sites: Enzymes, models, and intermediates
-
Costas, M., Mehn, M. P., Jensen, M. P., and Que, L., Jr. (2004) Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem. Rev. 104, 939 –986
-
(2004)
Chem. Rev.
, vol.104
, pp. 939-986
-
-
Costas, M.1
Mehn, M.P.2
Jensen, M.P.3
Que, L.4
-
36
-
-
73149122532
-
Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. Capsulatus (Bath): Evidence for a multi-step, proton-dependent reaction pathway
-
Tinberg, C. E., and Lippard, S. J. (2009) Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 48, 12145–12158
-
(2009)
Biochemistry
, vol.48
, pp. 12145-12158
-
-
Tinberg, C.E.1
Lippard, S.J.2
-
37
-
-
84893457195
-
Primitive and definitive erythropoiesis in mammals
-
Palis, J. (2014) Primitive and definitive erythropoiesis in mammals. Front. Physiol. 5, 3
-
(2014)
Front. Physiol.
, vol.5
, pp. 3
-
-
Palis, J.1
-
38
-
-
84875321185
-
Iron metabolism: Interactions with normal and disordered erythropoiesis
-
Ganz, T., and Nemeth, E. (2012) Iron metabolism: interactions with normal and disordered erythropoiesis. Cold Spring Harb. Perspect. Med. 2, a011668
-
(2012)
Cold Spring Harb. Perspect. Med.
, vol.2
, pp. a011668
-
-
Ganz, T.1
Nemeth, E.2
-
39
-
-
0018570807
-
Ferritin synthesis and iron uptake in developing erythroid cells
-
Konijn, A. M., Hershko, C., and Izak, G. (1979) Ferritin synthesis and iron uptake in developing erythroid cells. Am. J. Hematol. 6, 373–379
-
(1979)
Am. J. Hematol.
, vol.6
, pp. 373-379
-
-
Konijn, A.M.1
Hershko, C.2
Izak, G.3
-
40
-
-
70349237065
-
Conditional deletion of ferritin H in mice induces loss of iron storage and liver damage
-
Darshan, D., Vanoaica, L., Richman, L., Beermann, F., and Kühn, L. C. (2009) Conditional deletion of ferritin H in mice induces loss of iron storage and liver damage. Hepatology 50, 852– 860
-
(2009)
Hepatology
, vol.50
, pp. 852-860
-
-
Darshan, D.1
Vanoaica, L.2
Richman, L.3
Beermann, F.4
Kühn, L.C.5
-
41
-
-
33748417446
-
Release of iron from ferritin requires lysosomal activity
-
Kidane, T. Z., Sauble, E., and Linder, M. C. (2006) Release of iron from ferritin requires lysosomal activity. Am. J. Physiol. Cell Physiol. 291, C445–C455
-
(2006)
Am. J. Physiol. Cell Physiol.
, vol.291
, pp. C445-C455
-
-
Kidane, T.Z.1
Sauble, E.2
Linder, M.C.3
-
42
-
-
77955871827
-
Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit
-
Zhang, Y., Mikhael, M., Xu, D., Li, Y., Soe-Lin, S., Ning, B., Li, W., Nie, G., Zhao, Y., and Ponka, P. (2010) Lysosomal proteolysis is the primary degradation pathway for cytosolic ferritin and cytosolic ferritin degradation is necessary for iron exit. Antioxid. Redox Signal. 13, 999 –1009
-
(2010)
Antioxid. Redox Signal.
, vol.13
, pp. 999-1009
-
-
Zhang, Y.1
Mikhael, M.2
Xu, D.3
Li, Y.4
Soe-Lin, S.5
Ning, B.6
Li, W.7
Nie, G.8
Zhao, Y.9
Ponka, P.10
-
43
-
-
79956115511
-
Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells
-
Asano, T., Komatsu, M., Yamaguchi-Iwai, Y., Ishikawa, F., Mizushima, N., and Iwai, K. (2011) Distinct mechanisms of ferritin delivery to lysosomes in iron-depleted and iron-replete cells. Mol. Cell. Biol. 31, 2040 –2052
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 2040-2052
-
-
Asano, T.1
Komatsu, M.2
Yamaguchi-Iwai, Y.3
Ishikawa, F.4
Mizushima, N.5
Iwai, K.6
-
44
-
-
84908466248
-
Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
-
Dowdle, W. E., Nyfeler, B., Nagel, J., Elling, R. A., Liu, S., Triantafellow, E., Menon, S., Wang, Z., Honda, A., Pardee, G., Cantwell, J., Luu, C., Cornella-Taracido, I., Harrington, E., Fekkes, P., et al. (2014) Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069 –1079
-
(2014)
Nat. Cell Biol.
, vol.16
, pp. 1069-1079
-
-
Dowdle, W.E.1
Nyfeler, B.2
Nagel, J.3
Elling, R.A.4
Liu, S.5
Triantafellow, E.6
Menon, S.7
Wang, Z.8
Honda, A.9
Pardee, G.10
Cantwell, J.11
Luu, C.12
Cornella-Taracido, I.13
Harrington, E.14
Fekkes, P.15
-
45
-
-
84899746695
-
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
-
Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W., and Kimmelman, A. C. (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109
-
(2014)
Nature
, vol.509
, pp. 105-109
-
-
Mancias, J.D.1
Wang, X.2
Gygi, S.P.3
Harper, J.W.4
Kimmelman, A.C.5
-
46
-
-
0033523021
-
Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor
-
Heinlein, C. A., Ting, H. J., Yeh, S., and Chang, C. (1999) Identification of ARA70 as a ligand-enhanced coactivator for the peroxisome proliferator-activated receptor . J. Biol. Chem. 274, 16147–16152
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16147-16152
-
-
Heinlein, C.A.1
Ting, H.J.2
Yeh, S.3
Chang, C.4
-
47
-
-
0029951486
-
Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells
-
Yeh, S., and Chang, C. (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. U.S.A. 93, 5517–5521
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 5517-5521
-
-
Yeh, S.1
Chang, C.2
-
48
-
-
84946615455
-
Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis
-
Mancias, J. D., Pontano Vaites, L., Nissim, S., Biancur, D. E., Kim, A. J., Wang, X., Liu, Y., Goessling, W., Kimmelman, A. C., and Harper, J. W. (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. eLife 10.7554/eLife.10308
-
(2015)
eLife
-
-
Mancias, J.D.1
Pontano Vaites, L.2
Nissim, S.3
Biancur, D.E.4
Kim, A.J.5
Wang, X.6
Liu, Y.7
Goessling, W.8
Kimmelman, A.C.9
Harper, J.W.10
-
49
-
-
67849094731
-
Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis
-
Nilsson, R., Schultz, I. J., Pierce, E. L., Soltis, K. A., Naranuntarat, A., Ward, D. M., Baughman, J. M., Paradkar, P. N., Kingsley, P. D., Culotta, V. C., Kaplan, J., Palis, J., Paw, B. H., and Mootha, V. K. (2009) Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 10, 119 –130
-
(2009)
Cell Metab.
, vol.10
, pp. 119-130
-
-
Nilsson, R.1
Schultz, I.J.2
Pierce, E.L.3
Soltis, K.A.4
Naranuntarat, A.5
Ward, D.M.6
Baughman, J.M.7
Paradkar, P.N.8
Kingsley, P.D.9
Culotta, V.C.10
Kaplan, J.11
Palis, J.12
Paw, B.H.13
Mootha, V.K.14
-
50
-
-
84954286734
-
NCOA4 deficiency impairs systemic iron homeostasis
-
Bellelli, R., Federico, G., Matte’, A., Colecchia, D., Iolascon, A., Chiariello, M., Santoro, M., De Franceschi, L., and Carlomagno, F. (2016) NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14, 411– 421
-
(2016)
Cell Rep.
, vol.14
, pp. 411-421
-
-
Bellelli, R.1
Federico, G.2
Matte’, A.3
Colecchia, D.4
Iolascon, A.5
Chiariello, M.6
Santoro, M.7
De Franceschi, L.8
Carlomagno, F.9
-
51
-
-
34347375300
-
Direct interorganellar transfer of iron from endosome to mitochondrion
-
Sheftel, A. D., Zhang, A. S., Brown, C., Shirihai, O. S., and Ponka, P. (2007) Direct interorganellar transfer of iron from endosome to mitochondrion. Blood 110, 125–132
-
(2007)
Blood
, vol.110
, pp. 125-132
-
-
Sheftel, A.D.1
Zhang, A.S.2
Brown, C.3
Shirihai, O.S.4
Ponka, P.5
-
52
-
-
84939651324
-
The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins
-
Lill, R., Dutkiewicz, R., Freibert, S. A., Heidenreich, T., Mascarenhas, J., Netz, D. J., Paul, V. D., Pierik, A. J., Richter, N., Stümpfig, M., Srinivasan, V., Stehling, O., and Mühlenhoff, U. (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur. J. Cell Biol. 94, 280 –291
-
(2015)
Eur. J. Cell Biol.
, vol.94
, pp. 280-291
-
-
Lill, R.1
Dutkiewicz, R.2
Freibert, S.A.3
Heidenreich, T.4
Mascarenhas, J.5
Netz, D.J.6
Paul, V.D.7
Pierik, A.J.8
Richter, N.9
Stümpfig, M.10
Srinivasan, V.11
Stehling, O.12
Mühlenhoff, U.13
-
53
-
-
74049118108
-
Glutaredoxins: Roles in iron homeostasis
-
Rouhier, N., Couturier, J., Johnson, M. K., and Jacquot, J. P. (2010) Glutaredoxins: roles in iron homeostasis. Trends Biochem. Sci. 35, 43–52
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 43-52
-
-
Rouhier, N.1
Couturier, J.2
Johnson, M.K.3
Jacquot, J.P.4
-
54
-
-
0141737067
-
Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p
-
Mühlenhoff, U., Gerber, J., Richhardt, N., and Lill, R. (2003) Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J. 22, 4815– 4825
-
(2003)
EMBO J.
, vol.22
, pp. 4815-4825
-
-
Mühlenhoff, U.1
Gerber, J.2
Richhardt, N.3
Lill, R.4
-
55
-
-
0036226063
-
Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes
-
Rodríguez-Manzaneque, M. T., Tamarit, J., Bellí, G., Ros, J., and Herrero, E. (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13, 1109 –1121
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 1109-1121
-
-
Rodríguez-Manzaneque, M.T.1
Tamarit, J.2
Bellí, G.3
Ros, J.4
Herrero, E.5
-
56
-
-
23944500052
-
Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis
-
Wingert, R. A., Galloway, J. L., Barut, B., Foott, H., Fraenkel, P., Axe, J. L., Weber, G. J., Dooley, K., Davidson, A. J., Schmid, B., Paw, B. H., Shaw, G. C., Kingsley, P., Palis, J., Schubert, H., et al. (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436, 1035–1039
-
(2005)
Nature
, vol.436
, pp. 1035-1039
-
-
Wingert, R.A.1
Galloway, J.L.2
Barut, B.3
Foott, H.4
Fraenkel, P.5
Axe, J.L.6
Weber, G.J.7
Dooley, K.8
Davidson, A.J.9
Schmid, B.10
Paw, B.H.11
Shaw, G.C.12
Kingsley, P.13
Palis, J.14
Schubert, H.15
-
57
-
-
77957674907
-
Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron–sulfur cluster
-
Mühlenhoff, U., Molik, S., Godoy, J. R., Uzarska, M. A., Richter, N., Seu-bert, A., Zhang, Y., Stubbe, J., Pierrel, F., Herrero, E., Lillig, C. H., and Lill, R. (2010) Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron–sulfur cluster. Cell Metab. 12, 373–385
-
(2010)
Cell Metab
, vol.12
, pp. 373-385
-
-
Mühlenhoff, U.1
Molik, S.2
Godoy, J.R.3
Uzarska, M.A.4
Richter, N.5
Seu-Bert, A.6
Zhang, Y.7
Stubbe, J.8
Pierrel, F.9
Herrero, E.10
Lillig, C.H.11
Lill, R.12
-
58
-
-
70350070125
-
The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodi-meric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation
-
Li, H., Mapolelo, D. T., Dingra, N. N., Naik, S. G., Lees, N. S., Hoffman, B. M., Riggs-Gelasco, P. J., Huynh, B. H., Johnson, M. K., and Outten, C. E. (2009) The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodi-meric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry 48, 9569 –9581
-
(2009)
Biochemistry
, vol.48
, pp. 9569-9581
-
-
Li, H.1
Mapolelo, D.T.2
Dingra, N.N.3
Naik, S.G.4
Lees, N.S.5
Hoffman, B.M.6
Riggs-Gelasco, P.J.7
Huynh, B.H.8
Johnson, M.K.9
Outten, C.E.10
-
59
-
-
84941879247
-
N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin
-
Banci, L., Ciofi-Baffoni, S., Gajda, K., Muzzioli, R., Peruzzini, R., and Winkelmann, J. (2015) N-terminal domains mediate [2Fe-2S] cluster transfer from glutaredoxin-3 to anamorsin. Nat. Chem. Biol. 11, 772–778
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 772-778
-
-
Banci, L.1
Ciofi-Baffoni, S.2
Gajda, K.3
Muzzioli, R.4
Peruzzini, R.5
Winkelmann, J.6
-
60
-
-
84863229142
-
Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2
-
Li, H., Mapolelo, D. T., Randeniya, S., Johnson, M. K., and Outten, C. E. (2012) Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 51, 1687–1696
-
(2012)
Biochemistry
, vol.51
, pp. 1687-1696
-
-
Li, H.1
Mapolelo, D.T.2
Randeniya, S.3
Johnson, M.K.4
Outten, C.E.5
-
61
-
-
84992402685
-
A glutaredoxin-BolA complex serves as an iron–sulfur cluster chaperone for the cytosolic cluster assembly machinery
-
M116.744946
-
Frey, A. G., Palenchar, D. J., Wildemann, J. D., and Philpott, C. C. (2016) A glutaredoxin-BolA complex serves as an iron–sulfur cluster chaperone for the cytosolic cluster assembly machinery. J. Biol. Chem. 292, M116.744946
-
(2016)
J. Biol. Chem.
, vol.292
-
-
Frey, A.G.1
Palenchar, D.J.2
Wildemann, J.D.3
Philpott, C.C.4
-
62
-
-
84879563481
-
Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation
-
Haunhorst, P., Hanschmann, E. M., Bräutigam, L., Stehling, O., Hoffmann, B., Mühlenhoff, U., Lill, R., Berndt, C., and Lillig, C. H. (2013) Crucial function of vertebrate glutaredoxin 3 (PICOT) in iron homeostasis and hemoglobin maturation. Mol. Biol. Cell 24, 1895–1903
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 1895-1903
-
-
Haunhorst, P.1
Hanschmann, E.M.2
Bräutigam, L.3
Stehling, O.4
Hoffmann, B.5
Mühlenhoff, U.6
Lill, R.7
Berndt, C.8
Lillig, C.H.9
-
63
-
-
84861850380
-
Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis
-
Li, H., and Outten, C. E. (2012) Monothiol CGFS glutaredoxins and BolA-like proteins: [2Fe-2S] binding partners in iron homeostasis. Biochemistry 51, 4377– 4389
-
(2012)
Biochemistry
, vol.51
, pp. 4377-4389
-
-
Li, H.1
Outten, C.E.2
-
64
-
-
0024110635
-
Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli
-
Aldea, M., Hernández-Chico, C., de la Campa, A. G., Kushner, S. R., and Vicente, M. (1988) Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 170, 5169 –5176
-
(1988)
J. Bacteriol.
, vol.170
, pp. 5169-5176
-
-
Aldea, M.1
Hernández-Chico, C.2
De La Campa, A.G.3
Kushner, S.R.4
Vicente, M.5
-
65
-
-
80053898097
-
Mutations in iron–sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydroge-nase enzymes
-
Cameron, J. M., Janer, A., Levandovskiy, V., Mackay, N., Rouault, T. A., Tong, W. H., Ogilvie, I., Shoubridge, E. A., and Robinson, B. H. (2011) Mutations in iron–sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydroge-nase enzymes. Am. J. Hum. Genet. 89, 486 – 495
-
(2011)
Am. J. Hum. Genet.
, vol.89
, pp. 486-495
-
-
Cameron, J.M.1
Janer, A.2
Levandovskiy, V.3
Mackay, N.4
Rouault, T.A.5
Tong, W.H.6
Ogilvie, I.7
Shoubridge, E.A.8
Robinson, B.H.9
-
66
-
-
84986200954
-
Role of Nfu1 and Bol3 in iron–sulfur cluster transfer to mitochondrial clients
-
Melber, A., Na, U., Vashisht, A., Weiler, B. D., Lill, R., Wohlschlegel, J. A., and Winge, D. R. (2016) Role of Nfu1 and Bol3 in iron–sulfur cluster transfer to mitochondrial clients. eLife 5, e15991
-
(2016)
Elife
, vol.5
, pp. e15991
-
-
Melber, A.1
Na, U.2
Vashisht, A.3
Weiler, B.D.4
Lill, R.5
Wohlschlegel, J.A.6
Winge, D.R.7
-
67
-
-
84986332674
-
Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron–sulfur proteins
-
Uzarska, M. A., Nasta, V., Weiler, B. D., Spantgar, F., Ciofi-Baffoni, S., Saviello, M. R., Gonnelli, L., Mühlenhoff, U., Banci, L., and Lill, R. (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron–sulfur proteins. eLife 5, e16673
-
(2016)
Elife
, vol.5
, pp. e16673
-
-
Uzarska, M.A.1
Nasta, V.2
Weiler, B.D.3
Spantgar, F.4
Ciofi-Baffoni, S.5
Saviello, M.R.6
Gonnelli, L.7
Mühlenhoff, U.8
Banci, L.9
Lill, R.10
-
68
-
-
44849098197
-
Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron–sulfur cluster synthesis
-
Kumánovics, A., Chen, O. S., Li, L., Bagley, D., Adkins, E. M., Lin, H., Dingra, N. N., Outten, C. E., Keller, G., Winge, D., Ward, D. M., and Kaplan, J. (2008) Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron–sulfur cluster synthesis. J. Biol. Chem. 283, 10276 –10286
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10276-10286
-
-
Kumánovics, A.1
Chen, O.S.2
Li, L.3
Bagley, D.4
Adkins, E.M.5
Lin, H.6
Dingra, N.N.7
Outten, C.E.8
Keller, G.9
Winge, D.10
Ward, D.M.11
Kaplan, J.12
-
69
-
-
78650949287
-
Histidine 103 in Fra2 is an iron–sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast
-
Li, H., Mapolelo, D. T., Dingra, N. N., Keller, G., Riggs-Gelasco, P. J., Winge, D. R., Johnson, M. K., and Outten, C. E. (2011) Histidine 103 in Fra2 is an iron–sulfur cluster ligand in the [2Fe-2S] Fra2-Grx3 complex and is required for in vivo iron signaling in yeast. J. Biol. Chem. 286, 867–876
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 867-876
-
-
Li, H.1
Mapolelo, D.T.2
Dingra, N.N.3
Keller, G.4
Riggs-Gelasco, P.J.5
Winge, D.R.6
Johnson, M.K.7
Outten, C.E.8
-
70
-
-
33745872884
-
Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae
-
Ojeda, L., Keller, G., Muhlenhoff, U., Rutherford, J. C., Lill, R., and Winge, D. R. (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281, 17661–17669
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 17661-17669
-
-
Ojeda, L.1
Keller, G.2
Muhlenhoff, U.3
Rutherford, J.C.4
Lill, R.5
Winge, D.R.6
-
71
-
-
84896541032
-
Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2
-
Poor, C. B., Wegner, S. V., Li, H., Dlouhy, A. C., Schuermann, J. P., Sanishvili, R., Hinshaw, J. R., Riggs-Gelasco, P. J., Outten, C. E., and He, C. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc. Natl. Acad. Sci. U.S.A. 111, 4043– 4048
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 4043-4048
-
-
Poor, C.B.1
Wegner, S.V.2
Li, H.3
Dlouhy, A.C.4
Schuermann, J.P.5
Sanishvili, R.6
Hinshaw, J.R.7
Riggs-Gelasco, P.J.8
Outten, C.E.9
He, C.10
-
72
-
-
33751529756
-
Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae
-
Pujol-Carrion, N., Belli, G., Herrero, E., Nogues, A., and de la Torre-Ruiz, M. A. (2006) Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell Sci. 119, 4554 – 4564
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4554-4564
-
-
Pujol-Carrion, N.1
Belli, G.2
Herrero, E.3
Nogues, A.4
De La Torre-Ruiz, M.A.5
-
73
-
-
34547763678
-
Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae
-
Ueta, R., Fujiwara, N., Iwai, K., and Yamaguchi-Iwai, Y. (2007) Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae. Mol. Biol. Cell 18, 2980–2990
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 2980-2990
-
-
Ueta, R.1
Fujiwara, N.2
Iwai, K.3
Yamaguchi-Iwai, Y.4
-
74
-
-
84926393464
-
A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast
-
Encinar del Dedo, J., Gabrielli, N., Carmona, M., Ayté, J., and Hidalgo, E. (2015) A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast. PLoS Genet. 11, e1005106
-
(2015)
Plos Genet
, vol.11
, pp. e1005106
-
-
Encinar Del Dedo, J.1
Gabrielli, N.2
Carmona, M.3
Ayté, J.4
Hidalgo, E.5
-
75
-
-
79956029734
-
Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1
-
Jbel, M., Mercier, A., and Labbé, S. (2011) Grx4 monothiol glutaredoxin is required for iron limitation-dependent inhibition of Fep1. Eukaryot. Cell 10, 629 – 645
-
(2011)
Eukaryot. Cell
, vol.10
, pp. 629-645
-
-
Jbel, M.1
Mercier, A.2
Labbé, S.3
-
76
-
-
67749116417
-
Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1
-
Mercier, A., and Labbé, S. (2009) Both Php4 function and subcellular localization are regulated by iron via a multistep mechanism involving the glutaredoxin Grx4 and the exportin Crm1. J. Biol. Chem. 284, 20249 –20262
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 20249-20262
-
-
Mercier, A.1
Labbé, S.2
-
77
-
-
84861714092
-
The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function
-
Vachon, P., Mercier, A., Jbel, M., and Labbé, S. (2012) The monothiol glutaredoxin Grx4 exerts an iron-dependent inhibitory effect on Php4 function. Eukaryot. Cell 11, 806 – 819
-
(2012)
Eukaryot. Cell
, vol.11
, pp. 806-819
-
-
Vachon, P.1
Mercier, A.2
Jbel, M.3
Labbé, S.4
-
78
-
-
84953439212
-
Elucidating the molecular function of human BOLA2 in GRX3-depen-dent anamorsin maturation pathway
-
Banci, L., Camponeschi, F., Ciofi-Baffoni, S., and Muzzioli, R. (2015) Elucidating the molecular function of human BOLA2 in GRX3-depen-dent anamorsin maturation pathway. J Am. Chem. Soc. 137, 16133–16143
-
(2015)
J Am. Chem. Soc.
, vol.137
, pp. 16133-16143
-
-
Banci, L.1
Camponeschi, F.2
Ciofi-Baffoni, S.3
Muzzioli, R.4
-
79
-
-
84876904219
-
Molecular view of an electron transfer process essential for iron–sulfur protein biogenesis
-
Banci, L., Bertini, I., Calderone, V., Ciofi-Baffoni, S., Giachetti, A., Jaiswal, D., Mikolajczyk, M., Piccioli, M., and Winkelmann, J. (2013) Molecular view of an electron transfer process essential for iron–sulfur protein biogenesis. Proc. Natl. Acad. Sci. U.S.A. 110, 7136 –7141
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 7136-7141
-
-
Banci, L.1
Bertini, I.2
Calderone, V.3
Ciofi-Baffoni, S.4
Giachetti, A.5
Jaiswal, D.6
Mikolajczyk, M.7
Piccioli, M.8
Winkelmann, J.9
-
80
-
-
84892366922
-
Human anamorsin binds [2Fe-2S] clusters with unique electronic properties
-
Banci, L., Ciofi-Baffoni, S., Mikolajczyk, M., Winkelmann, J., Bill, E., and Pandelia, M. E. (2013) Human anamorsin binds [2Fe-2S] clusters with unique electronic properties. J. Biol. Inorg. Chem. 18, 883– 893
-
(2013)
J. Biol. Inorg. Chem.
, vol.18
, pp. 883-893
-
-
Banci, L.1
Ciofi-Baffoni, S.2
Mikolajczyk, M.3
Winkelmann, J.4
Bill, E.5
Pandelia, M.E.6
-
81
-
-
84992315382
-
The conserved Dre2 uses essential [2Fe-2S] and [4Fe-4S] clusters for function in cytosolic iron–sulfur protein assembly
-
Netz, D. J., Genau, H. M., Weiler, B. D., Bill, E., Pierik, A. J., and Lill, R. (2016) The conserved Dre2 uses essential [2Fe-2S] and [4Fe-4S] clusters for function in cytosolic iron–sulfur protein assembly. Biochem. J. 473, 2073–2085
-
(2016)
Biochem. J.
, vol.473
, pp. 2073-2085
-
-
Netz, D.J.1
Genau, H.M.2
Weiler, B.D.3
Bill, E.4
Pierik, A.J.5
Lill, R.6
-
82
-
-
77956921790
-
Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis
-
Netz, D. J., Stümpfig, M., Doré, C., Mühlenhoff, U., Pierik, A. J., and Lill, R. (2010) Tah18 transfers electrons to Dre2 in cytosolic iron–sulfur protein biogenesis. Nat. Chem. Biol. 6, 758 –765
-
(2010)
Nat. Chem. Biol.
, vol.6
, pp. 758-765
-
-
Netz, D.J.1
Stümpfig, M.2
Doré, C.3
Mühlenhoff, U.4
Pierik, A.J.5
Lill, R.6
-
83
-
-
51349089178
-
Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis
-
Zhang, Y., Lyver, E. R., Nakamaru-Ogiso, E., Yoon, H., Amutha, B., Lee, D. W., Bi, E., Ohnishi, T., Daldal, F., Pain, D., and Dancis, A. (2008) Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol. Cell. Biol. 28, 5569 –5582
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 5569-5582
-
-
Zhang, Y.1
Lyver, E.R.2
Nakamaru-Ogiso, E.3
Yoon, H.4
Amutha, B.5
Lee, D.W.6
Bi, E.7
Ohnishi, T.8
Daldal, F.9
Pain, D.10
Dancis, A.11
-
84
-
-
84948671937
-
Cancer-related NEET proteins transfer 2Fe-2S clusters to anamorsin, a protein required for cytosolic iron–sulfur cluster biogenesis
-
Lipper, C. H., Paddock, M. L., Onuchic, J. N., Mittler, R., Nechushtai, R., and Jennings, P. A. (2015) Cancer-related NEET proteins transfer 2Fe-2S clusters to anamorsin, a protein required for cytosolic iron–sulfur cluster biogenesis. PLoS One 10, e0139699
-
(2015)
Plos One
, vol.10
, pp. e0139699
-
-
Lipper, C.H.1
Paddock, M.L.2
Onuchic, J.N.3
Mittler, R.4
Nechushtai, R.5
Jennings, P.A.6
-
85
-
-
84956574430
-
His-87 ligand in mitoNEET is crucial for the transfer of iron sulfur clusters from mitochondria to cytosolic aconitase
-
Tan, G., Liu, D., Pan, F., Zhao, J., Li, T., Ma, Y., Shen, B., and Lyu, J. (2016) His-87 ligand in mitoNEET is crucial for the transfer of iron sulfur clusters from mitochondria to cytosolic aconitase. Biochem. Biophys. Res. Com-mun. 470, 226 –232
-
(2016)
Biochem. Biophys. Res. Com-mun
, vol.470
, pp. 226-232
-
-
Tan, G.1
Liu, D.2
Pan, F.3
Zhao, J.4
Li, T.5
Ma, Y.6
Shen, B.7
Lyu, J.8
|