메뉴 건너뛰기




Volumn 71, Issue , 2017, Pages 320-336

Two-dimensional subspace alignment for convolutional activations adaptation

Author keywords

Convolutional activations; Domain divergence measure; Subspace alignment; Two dimensional PCA; Visual domain adaptation

Indexed keywords

ALIGNMENT; CHEMICAL ACTIVATION; CONVOLUTION;

EID: 85022324600     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.06.010     Document Type: Article
Times cited : (16)

References (51)
  • 4
    • 85032751052 scopus 로고    scopus 로고
    • Visual domain adaptation: a survey of recent advances
    • Patel, V.M., Gopalan, R., Li, R., Chellappa, R., Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32:3 (2015), 53–69, 10.1109/MSP.2014.2347059.
    • (2015) IEEE Signal Process. Mag. , vol.32 , Issue.3 , pp. 53-69
    • Patel, V.M.1    Gopalan, R.2    Li, R.3    Chellappa, R.4
  • 15
    • 84901836467 scopus 로고    scopus 로고
    • Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation
    • Li, W., Duan, L., Xu, D., Tsang, I.W., Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 36:6 (2014), 1134–1148, 10.1109/TPAMI.2013.167.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.36 , Issue.6 , pp. 1134-1148
    • Li, W.1    Duan, L.2    Xu, D.3    Tsang, I.W.4
  • 17
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37:9 (2015), 1904–1916, 10.1109/TPAMI.2015.2389824.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional PCA: a new approach to appearance-based face representation and recognition
    • Yang, J., Zhang, D., Frangi, A., Yang, J.-Y., Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26:1 (2004), 131–137, 10.1109/TPAMI.2004.1261097.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2    Frangi, A.3    Yang, J.-Y.4
  • 21
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S.J., Yang, Q., A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22:10 (2010), 1345–1359, 10.1109/TKDE.2009.191.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 22
    • 0037527188 scopus 로고    scopus 로고
    • Improving predictive inference under covariate shift by weighting the log-likelihood function
    • Shimodaira, H., Improving predictive inference under covariate shift by weighting the log-likelihood function. J. Stat. Plan. Inference 90:2 (2000), 227–244, 10.1016/S0378-3758(00)00115-4.
    • (2000) J. Stat. Plan. Inference , vol.90 , Issue.2 , pp. 227-244
    • Shimodaira, H.1
  • 24
    • 84862210850 scopus 로고    scopus 로고
    • On minimum distribution discrepancy support vector machine for domain adaptation
    • Tao, J., lai Chung, F., Wang, S., On minimum distribution discrepancy support vector machine for domain adaptation. Pattern Recognit. 45:11 (2012), 3962–3984, 10.1016/j.patcog.2012.04.014.
    • (2012) Pattern Recognit. , vol.45 , Issue.11 , pp. 3962-3984
    • Tao, J.1    lai Chung, F.2    Wang, S.3
  • 25
    • 84978323440 scopus 로고    scopus 로고
    • A svm-based model-transferring method for heterogeneous domain adaptation
    • Mozafari, A.S., Jamzad, M., A svm-based model-transferring method for heterogeneous domain adaptation. Pattern Recognit. 56 (2016), 142–158, 10.1016/j.patcog.2016.03.009.
    • (2016) Pattern Recognit. , vol.56 , pp. 142-158
    • Mozafari, A.S.1    Jamzad, M.2
  • 28
    • 84888367927 scopus 로고    scopus 로고
    • Unsupervised language model adaptation for handwritten chinese text recognition
    • Wang, Q.-F., Yin, F., Liu, C.-L., Unsupervised language model adaptation for handwritten chinese text recognition. Pattern Recognit. 47:3 (2014), 1202–1216, 10.1016/j.patcog.2013.09.015.
    • (2014) Pattern Recognit. , vol.47 , Issue.3 , pp. 1202-1216
    • Wang, Q.-F.1    Yin, F.2    Liu, C.-L.3
  • 29
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach
    • Bergamo, A., Torresani, L., Exploiting weakly-labeled web images to improve object classification: a domain adaptation approach. Advances in Neural Information Processing Systems (NIPS), 2010, 181–189.
    • (2010) Advances in Neural Information Processing Systems (NIPS) , pp. 181-189
    • Bergamo, A.1    Torresani, L.2
  • 31
    • 84988493200 scopus 로고    scopus 로고
    • Learning coupled classifiers with rgb images for rgb-d object recognition
    • Li, X., Fang, M., Zhang, J.-J., Wu, J., Learning coupled classifiers with rgb images for rgb-d object recognition. Pattern Recognit. 61 (2017), 433–446, 10.1016/j.patcog.2016.08.016.
    • (2017) Pattern Recognit. , vol.61 , pp. 433-446
    • Li, X.1    Fang, M.2    Zhang, J.-J.3    Wu, J.4
  • 33
    • 85083950659 scopus 로고    scopus 로고
    • Efficient learning of domain-invariant image representations
    • CoRR abs/1301.3224
    • J. Hoffman, E. Rodner, J. Donahue, T. Darrell, K. Saenko, Efficient learning of domain-invariant image representations, CoRR abs/1301.3224(2013).
    • (2013)
    • Hoffman, J.1    Rodner, E.2    Donahue, J.3    Darrell, T.4    Saenko, K.5
  • 34
    • 79951681949 scopus 로고    scopus 로고
    • Domain adaptation via transfer component analysis
    • Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q., Domain adaptation via transfer component analysis. IEEE Trans. Neural Networks 22:2 (2011), 199–210, 10.1109/TNN.2010.2091281.
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.2 , pp. 199-210
    • Pan, S.J.1    Tsang, I.W.2    Kwok, J.T.3    Yang, Q.4
  • 37
    • 84862192949 scopus 로고    scopus 로고
    • Domain adaptation from multiple sources: a domain-dependent regularization approach
    • Duan, L., Xu, D., Tsang, I.W.-H., Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans. Neural Netw. Learn Syst. 23:3 (2012), 504–518, 10.1109/TNNLS.2011.2178556.
    • (2012) IEEE Trans. Neural Netw. Learn Syst. , vol.23 , Issue.3 , pp. 504-518
    • Duan, L.1    Xu, D.2    Tsang, I.W.-H.3
  • 40
    • 27144439629 scopus 로고    scopus 로고
    • Sample size and subject to item ratio in principal components analysis
    • Osborne, J.W., Costello, A.B., Sample size and subject to item ratio in principal components analysis. Practical Assess. Res. Eval., 9(11), 2004, 8.
    • (2004) Practical Assess. Res. Eval. , vol.9 , Issue.11 , pp. 8
    • Osborne, J.W.1    Costello, A.B.2
  • 41
  • 42
    • 84994304881 scopus 로고    scopus 로고
    • Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations
    • Lu, H., Cao, Z., Xiao, Y., Fang, Z., Zhu, Y., Toward good practices for fine-grained maize cultivar identification with filter-specific convolutional activations. IEEE Trans. Autom. Sci. Eng., 2016, 10.1109/TASE.2016.2616485.
    • (2016) IEEE Trans. Autom. Sci. Eng.
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Fang, Z.4    Zhu, Y.5
  • 43
    • 85015436532 scopus 로고    scopus 로고
    • Towards fine-grained maize tassel flowering status recognition: dataset, theory and practice
    • Lu, H., Cao, Z., Xiao, Y., Fang, Z., Zhu, Y., Towards fine-grained maize tassel flowering status recognition: dataset, theory and practice. Appl. Soft Comput. 56 (2017), 34–45, 10.1016/j.asoc.2017.02.026.
    • (2017) Appl. Soft Comput. , vol.56 , pp. 34-45
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Fang, Z.4    Zhu, Y.5
  • 44
    • 84941622266 scopus 로고    scopus 로고
    • Fine-grained maize tassel trait characterization with multi-view representations
    • Lu, H., Cao, Z., Xiao, Y., Fang, Z., Zhu, Y., Xian, K., Fine-grained maize tassel trait characterization with multi-view representations. Comput. Electron. Agric. 118 (2015), 143–158, 10.1016/j.compag.2015.08.027.
    • (2015) Comput. Electron. Agric. , vol.118 , pp. 143-158
    • Lu, H.1    Cao, Z.2    Xiao, Y.3    Fang, Z.4    Zhu, Y.5    Xian, K.6
  • 46
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: a library for large linear classification
    • Fan, R.-e., Wang, X.-r., Lin, C.-j., LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9:2008 (2014), 1871–1874.
    • (2014) J. Mach. Learn. Res. , vol.9 , Issue.2008 , pp. 1871-1874
    • Fan, R.-E.1    Wang, X.-R.2    Lin, C.-J.3
  • 49
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • CoRR abs/1409.1556
    • K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, CoRR abs/1409.1556(2014).
    • (2014)
    • Simonyan, K.1    Zisserman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.