메뉴 건너뛰기




Volumn 55, Issue 10, 2017, Pages 5585-5599

Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification

Author keywords

Deep multiscale feature; feature fusion; fully convolutional network (FCN); hyperspectral image classification (HSIC); spatial distribution prediction

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; SPECTROSCOPY;

EID: 85021951898     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2710079     Document Type: Article
Times cited : (220)

References (42)
  • 1
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. 1, pp. 110-122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.1 , pp. 110-122
    • Plaza, A.1
  • 2
    • 84961290437 scopus 로고    scopus 로고
    • A hyperspectral image classification framework and its application
    • Apr.
    • S. Deng, Y. Xu, Y. He, J. Yin, and Z. Wu, "A hyperspectral image classification framework and its application," Inf. Sci., vol. 299, pp. 379-393, Apr. 2015.
    • (2015) Inf. Sci. , vol.299 , pp. 379-393
    • Deng, S.1    Xu, Y.2    He, Y.3    Yin, J.4    Wu, Z.5
  • 3
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 4
    • 0242712308 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral image classification with spectral-based kernels
    • Jul.
    • G. Mercier and M. Lennon, "Support vector machines for hyperspectral image classification with spectral-based kernels," in Proc. IGARSS, Jul. 2003, pp. 288-290.
    • (2003) Proc. IGARSS , pp. 288-290
    • Mercier, G.1    Lennon, M.2
  • 5
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 6
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • Jan.
    • F. Wang and C. Zhang, "Label propagation through linear neighborhoods," IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55-67, Jan. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.1 , pp. 55-67
    • Wang, F.1    Zhang, C.2
  • 7
    • 84873289445 scopus 로고    scopus 로고
    • Transductive multilabel learning via label set propagation
    • Mar.
    • X. Kong, M. K. Ng, and Z.-H. Zhou, "Transductive multilabel learning via label set propagation," IEEE Trans. Geosci. Remote Sens., vol. 25, no. 3, pp. 704-719, Mar. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.25 , Issue.3 , pp. 704-719
    • Kong, X.1    Ng, M.K.2    Zhou, Z.-H.3
  • 8
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. D. Lafferty, "Semi-supervised learning using Gaussian fields and harmonic functions," in Proc. ICML, 2003, pp. 912-919.
    • (2003) Proc. ICML , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3
  • 9
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 10
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun.
    • H. Zhang, J. Li, Y. Huang, and L. Zhang, "A nonlocal weighted joint sparse representation classification method for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056-2065, Jun. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.1    Li, J.2    Huang, Y.3    Zhang, L.4
  • 11
    • 84897025270 scopus 로고    scopus 로고
    • Structured priors for sparse-representation-based hyperspectral image classification
    • Jul.
    • X. Sun, Q. Qu, N. M. Nasrabadi, and T. D. Tran, "Structured priors for sparse-representation-based hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 7, pp. 1235-1239, Jul. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.7 , pp. 1235-1239
    • Sun, X.1    Qu, Q.2    Nasrabadi, N.M.3    Tran, T.D.4
  • 12
    • 84903278535 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation
    • Dec.
    • L. Fang, S. Li, X. Kang, and J. A. Benediktsson, "Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 12, pp. 7738-7749, Dec. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.12 , pp. 7738-7749
    • Fang, L.1    Li, S.2    Kang, X.3    Benediktsson, J.A.4
  • 13
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Jan.
    • Y. Chen, N. M. Nasrabadi, and D. T. Tran, "Hyperspectral image classification via kernel sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 1233-1236, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 1233-1236
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, D.T.3
  • 14
    • 85027918928 scopus 로고    scopus 로고
    • Region-kernel-based support vector machines for hyperspectral image classification
    • Sep.
    • J. Peng, Y. Zhou, and C. L. P. Chen, "Region-kernel-based support vector machines for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 9, pp. 4810-4824, Sep. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.9 , pp. 4810-4824
    • Peng, J.1    Zhou, Y.2    Chen, C.L.P.3
  • 15
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.V.B.2    Zhou, D.3
  • 16
    • 77953177416 scopus 로고    scopus 로고
    • Sparsity induced similarity measure for label propagation
    • H. Cheng, Z. Liu, and J. Yang, "Sparsity induced similarity measure for label propagation," in Proc. ICCV, 2009, pp. 317-324.
    • (2009) Proc. ICCV , pp. 317-324
    • Cheng, H.1    Liu, Z.2    Yang, J.3
  • 17
    • 84876888732 scopus 로고    scopus 로고
    • Semisupervised classification with cluster regularization
    • Nov.
    • R. G. F. Soares, H. Chen, and X. Yao, "Semisupervised classification with cluster regularization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1779-1792, Nov. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.11 , pp. 1779-1792
    • Soares, R.G.F.1    Chen, H.2    Yao, X.3
  • 18
    • 84899785506 scopus 로고    scopus 로고
    • Gabor-filtering-based nearest regularized subspace for hyperspectral image classification
    • Apr.
    • W. Li and Q. Du, "Gabor-filtering-based nearest regularized subspace for hyperspectral image classification," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 4, pp. 1012-1022, Apr. 2014.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.4 , pp. 1012-1022
    • Li, W.1    Du, Q.2
  • 19
    • 84955562134 scopus 로고    scopus 로고
    • Gabor cube selection based multitask joint sparse representation for hyperspectral image classification
    • Jun.
    • S. Jia, J. Hu, Y. Xie, L. Shen, X. Jia, and Q. Li, "Gabor cube selection based multitask joint sparse representation for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3174-3187, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3174-3187
    • Jia, S.1    Hu, J.2    Xie, Y.3    Shen, L.4    Jia, X.5    Li, Q.6
  • 20
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 21
    • 84921061644 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation
    • May
    • L. He, Y. Li, X. Li, and W. Wu, "Spectral-spatial classification of hyperspectral images via spatial translation-invariant wavelet-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2696-2712, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2696-2712
    • He, L.1    Li, Y.2    Li, X.3    Wu, W.4
  • 22
    • 84977853388 scopus 로고    scopus 로고
    • Supervised classification of very high resolution optical images using wavelet-based textural features
    • Jun.
    • O. Regniers, L. Bombrun, V. Lafon, and C. Germain, "Supervised classification of very high resolution optical images using wavelet-based textural features," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3722-3735, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3722-3735
    • Regniers, O.1    Bombrun, L.2    Lafon, V.3    Germain, C.4
  • 23
    • 84955620816 scopus 로고    scopus 로고
    • Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification
    • Jun.
    • Y. Gu, T. Liu, X. Jia, J. A. Benediktsson, and J. Chanussot, "Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3235-3247, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3235-3247
    • Gu, Y.1    Liu, T.2    Jia, X.3    Benediktsson, J.A.4    Chanussot, J.5
  • 24
    • 84906784880 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation
    • Jan.
    • Z. Xue, J. Li, L. Cheng, and P. Du, "Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 70-84, Jan. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.1 , pp. 70-84
    • Xue, Z.1    Li, J.2    Cheng, L.3    Du, P.4
  • 25
    • 84896389880 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral images with image fusion and recursive filtering
    • Jun.
    • X. Kang, S. Li, and J. A. Benediktsson, "Feature extraction of hyperspectral images with image fusion and recursive filtering," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3742-3752, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3742-3752
    • Kang, X.1    Li, S.2    Benediktsson, J.A.3
  • 26
    • 84908028989 scopus 로고    scopus 로고
    • Intrinsic image decomposition for feature extraction of hyperspectral images
    • Apr.
    • X. Kang, S. Li, L. Fang, and J. A. Benediktsson, "Intrinsic image decomposition for feature extraction of hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2241-2253, Apr. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.4 , pp. 2241-2253
    • Kang, X.1    Li, S.2    Fang, L.3    Benediktsson, J.A.4
  • 27
    • 85027924217 scopus 로고    scopus 로고
    • Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels
    • Dec.
    • L. Fang, S. Li, W. Duan, J. Ren, and J. A. Benediktsson, "Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12, pp. 6663-6674, Dec. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.12 , pp. 6663-6674
    • Fang, L.1    Li, S.2    Duan, W.3    Ren, J.4    Benediktsson, J.A.5
  • 28
    • 85027920785 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model
    • Aug.
    • L. Fang, S. Li, X. Kang, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4186-4201, Aug. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4186-4201
    • Fang, L.1    Li, S.2    Kang, X.3    Benediktsson, J.A.4
  • 30
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 31
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 32
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proc. CVPR, 2015, pp. 3431-3440.
    • (2015) Proc. CVPR , pp. 3431-3440
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 33
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing Imagery
    • Nov.
    • F. Hu, G. Xia, J. Hu, and L. Zhang, "Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing Imagery," Remote Sens., vol. 7, no. 11, pp. 14680-14707, Nov. 2015.
    • (2015) Remote Sens. , vol.7 , Issue.11 , pp. 14680-14707
    • Hu, F.1    Xia, G.2    Hu, J.3    Zhang, L.4
  • 34
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • Jun.
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level image representations using convolutional neural networks," in Proc. CVPR, Jun. 2014, pp. 1717-1724.
    • (2014) Proc. CVPR , pp. 1717-1724
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. ECCV, 2013, pp. 818-833.
    • (2013) Proc. ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 38
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov.
    • L. van der Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten Der Van, L.1    Hinton, G.2
  • 39
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27, 2011.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 40
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
    • R. Weber, H. J. Schek, and S. Blott, "A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces," in Proc. VLDB, vol. 98. 1998, pp. 194-205.
    • (1998) Proc. VLDB , vol.98 , pp. 194-205
    • Weber, R.1    Schek, H.J.2    Blott, S.3
  • 42
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Sep.
    • J. L. Bentley, "Multidimensional binary search trees used for associative searching," Commun. ACM, vol. 18, no. 9, pp. 509-517, Sep. 1975.
    • (1975) Commun. ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.