메뉴 건너뛰기




Volumn 25, Issue 3, 2013, Pages 704-719

Transductive multilabel learning via label set propagation

Author keywords

Data mining; machine learning; multilabel learning; semi supervised learning; transductive learning; unlabeled data

Indexed keywords

AUTOMATIC IMAGE ANNOTATION; CLOSED FORM SOLUTIONS; EFFECTIVE ALGORITHMS; EMPIRICAL STUDIES; GENE-FUNCTION ANALYSIS; LABEL SETS; LABELED AND UNLABELED DATA; LABELED TRAINING DATA; LEARNING METHODS; LEARNING TASKS; MULTI-LABEL; MULTIPLE CLASS; MULTIPLE LABELS; OPTIMIZATION PROBLEMS; REAL-WORLD APPLICATION; SEMI-SUPERVISED LEARNING; SET PROPAGATION; TRANSDUCTIVE LEARNING; UNLABELED DATA;

EID: 84873289445     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2011.141     Document Type: Article
Times cited : (158)

References (42)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold Regularization: A Geometric Framework for Learning from Examples," J. Machine Learning Research, vol. 7, pp. 2399-2434, 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla, "Learning from Labeled and Unlabeled Data Using Graph Mincuts," Proc. 18th Int'l Conf. Machine Learning, pp. 19-26, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 19-26
    • Blum, A.1    Chawla, S.2
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M.R. Boutell, J. Luo, X. Shen, and C.M. Brown, "Learning Multi-Label Scene Classification," Pattern Recognition, vol. 37, no. 9, pp. 1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 8
    • 8344282787 scopus 로고    scopus 로고
    • Learning multi-label alternating decision trees from texts and data
    • Machine Learning and Data Mining in Pattern Recognition
    • F.D. Comité, R. Gilleron, and M. Tommasi, "Learning Multi-Label Altenating Decision Tree From Texts and Data," Proc. Third Int'l Conf. Machine Learning and Data Mining in Pattern Recognition, pp. 35-49, 2003. (Pubitemid 36904942)
    • (2003) Lecture Notes in Computer Science , Issue.2734 , pp. 35-49
    • De Comite, F.1    Gilleron, R.2    Tommasi, M.3
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R.E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," J. Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
  • 15
    • 7444230008 scopus 로고    scopus 로고
    • Discriminative methods for multi-labeled classification
    • Advances in Knowledge Discovery and Data Mining
    • S. Godbole and S. Sarawagi, "Discriminative Methods for Multi-Labeled Classification," Proc. Eight Pacific-Asia Conf. Knowledge Discovery and Data Mining, pp. 22-30, 2004. (Pubitemid 38824880)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 22-30
    • Godbole, S.1    Sarawagi, S.2
  • 16
    • 84873291839 scopus 로고
    • Iterative solution of large sparse systems of equations
    • W. Hackbusch, "Iterative Solution of Large Sparse Systems of Equations," Math. of Computation, vol. 64, no. 212, pp. 1759-1761, 1995.
    • (1995) Math. of Computation , vol.64 , Issue.212 , pp. 1759-1761
    • Hackbusch, W.1
  • 17
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims, "Transductive Inference for Text Classification Using Support Vector Machines," Proc. 16th Int'l Conf. Machine Learning, pp. 200-209, 1999.
    • (1999) Proc. 16th Int'l Conf. Machine Learning , pp. 200-209
    • Joachims, T.1
  • 18
    • 1942484960 scopus 로고    scopus 로고
    • Transductive learning via spectral graph partitioning
    • T. Joachims, "Transductive Learning via Spectral Graph Partitioning," Proc. 20th Int'l Conf. Machine Learning, pp. 290-297, 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning , pp. 290-297
    • Joachims, T.1
  • 20
    • 84899033524 scopus 로고    scopus 로고
    • Maximal margin labeling for multi-topic text categorization
    • L.K. Saul, Y. Weiss, and L. Bottou, eds MIT Press
    • H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, "Maximal Margin Labeling for Multi-Topic Text Categorization," Advances in Neural Information Processing Systems 17, L.K. Saul, Y. Weiss, and L. Bottou, eds., pp. 649-656, MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 649-656
    • Kazawa, H.1    Izumitani, T.2    Taira, H.3    Maeda, E.4
  • 21
    • 84876811202 scopus 로고    scopus 로고
    • Rcv1: A new benchmark collection for text categorization researcha
    • D.D. Lewis, Y. Yang, T. Rose, and F. Li, "RCV1: A New Benchmark Collection for Text Categorization Research," J. Machine Learning Research, vol. 5, pp. 361-397, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.3    Li, F.4
  • 22
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • Y. Liu, R. Jin, and L. Yang, "Semi-Supervised Multi-Label Learning by Constrained Non-Negative Matrix Factorization," Proc. 21st Nat'l Conf. Artificial Intelligence, pp. 421-426, 2006. (Pubitemid 44705320)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 23
    • 0028385461 scopus 로고
    • Sparse QR factorization in MATLAB
    • P. Matstoms, "Sparse QR Factorization in MATLAB," ACM Trans. Math. Software, vol. 20, no. 1, pp. 136-159, 1994.
    • (1994) ACM Trans. Math. Software , vol.20 , Issue.1 , pp. 136-159
    • Matstoms, P.1
  • 25
    • 84873285121 scopus 로고    scopus 로고
    • A study of interactive multiple class image segmentation problems
    • UCLA CAM
    • M. Ng, G. Qiu, and A. Yip, "A Study of Interactive Multiple Class Image Segmentation Problems," Technical Report 07-51, UCLA CAM, 2007.
    • (2007) Technical Report 07-51
    • Ng, M.1    Qiu, G.2    Yip, A.3
  • 26
    • 33748368138 scopus 로고    scopus 로고
    • Combining microarray expression data and phylogenetic profiles to learn functional categories using support vector machinesa
    • P. Pavlidis, J. Weston, J. Cai, and W.N. Grundy, "Combining Microarray Expression Data and Phylogenetic Profiles to Learn Functional Categories Using Support Vector Machines," Proc. Fifth Int'l Conf. Computational Biology, pp. 242-248, 2001.
    • (2001) Proc. Fifth Int'l Conf. Computational Biology , pp. 242-248
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Grundy, W.N.4
  • 28
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R.E. Schapire and Y. Singer, "BoosTexter: A Boosting-Based System for Text Categorization," Machine Learning, vol. 39, nos. 2/3, pp. 135-168, 2000. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 31
    • 84898954552 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • S. Becker, S. Thrun, and K. Obermayer, eds MIT Press
    • N. Ueda and K. Saito, "Parametric Mixture Models for Multi-Labeled Text," Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, eds., pp. 721-728, MIT Press, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 33
    • 0000681228 scopus 로고    scopus 로고
    • A quantitative analysis and performance study for similaritysearch methods in high-dimensional space
    • R. Weber, H.-J. Schek, and S. Blott, "A Quantitative Analysis and Performance Study for Similaritysearch Methods in High-Dimensional Space," Proc. 24th Int'l Conf. Very Large Data Bases, pp. 194-205, 1998.
    • (1998) Proc. 24th Int'l Conf. Very Large Data Bases , pp. 194-205
    • Weber, R.1    Schek, H.-J.2    Blott, S.3
  • 34
    • 33748366796 scopus 로고    scopus 로고
    • Multi-label neural networks with applications to functional genomics and text categorization
    • Oct
    • M.-L. Zhang and Z.-H. Zhou, "Multi-Label Neural Networks with Applications to Functional Genomics and Text Categorization," IEEE Trans. Knowledge and Data Eng., vol. 18, no. 10, pp. 1479-1493, Oct. 2006.
    • (2006) IEEE Trans. Knowledge and Data Eng , vol.18 , Issue.10 , pp. 1479-1493
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 35
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • DOI 10.1016/j.patcog.2006.12.019, PII S0031320307000027
    • M.-L. Zhang and Z.-H. Zhou, "ML-kNN: A Lazy Learning Approach to Multi-Label Learning," Pattern Recognition, vol. 40, no. 7, pp. 2038-2048, 2007. (Pubitemid 46497248)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 36
    • 78049346655 scopus 로고    scopus 로고
    • Multilabel dimensionality reduction via dependence maximization
    • article 14
    • Y. Zhang and Z.-H. Zhou, "Multilabel Dimensionality Reduction via Dependence Maximization," ACM Trans. Knowledge Discovery from Data, vol. 4, no. 3, article 14, 2010.
    • (2010) ACM Trans. Knowledge Discovery from Data , vol.4 , Issue.3
    • Zhang, Y.1    Zhou, Z.-H.2
  • 38
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • Z.-H. Zhou and M. Li, "Semi-Supervised Learning by Disagreement," Knowledge and Information Systems, vol. 24, no. 3, pp. 415-439, 2010.
    • (2010) Knowledge and Information Systems , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 39
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • Y. Weiss, B. Schölkopf, and J. Platt, eds MIT Press
    • Z.-H. Zhou and M.-L. Zhang, "Multi-Instance Multi-Label Learning with Application to Scene Classification," Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, eds., pp. 1609-1616, MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.