-
1
-
-
84865030017
-
Big data and city living – what can it do for us?
-
Ann Keller, S., Koonin, S.E. and Shipp, S. (2012), “Big data and city living – what can it do for us?”, Significance, Vol. 9 No. 4, pp. 4-7, available at: http://dx.doi.org/10.1111/j.1740-9713.2012.00583
-
(2012)
Significance
, vol.9
, Issue.4
, pp. 4-7
-
-
Ann Keller, S.1
Koonin, S.E.2
Shipp, S.3
-
2
-
-
84866692693
-
Making advanced analytics work for you
-
Barton, D. and Court, D. (2012), “Making advanced analytics work for you”, Harvard Business Review, Vol. 90 No. 10, pp. 78-83, 128.
-
(2012)
Harvard Business Review
, vol.90
, Issue.10
, pp. 78-83, 128
-
-
Barton, D.1
Court, D.2
-
3
-
-
84869421430
-
Finding value in the information explosion
-
Beath, C., Becerra-Fernandez, I., Ross, J. and Short, J. (2012), “Finding value in the information explosion”, MIT Sloan Management Review, Vol. 53 No. 4, p. 18.
-
(2012)
MIT Sloan Management Review
, vol.53
, Issue.4
, pp. 18
-
-
Beath, C.1
Becerra-Fernandez, I.2
Ross, J.3
Short, J.4
-
4
-
-
84888182750
-
Big data: what’s your plan?
-
Biesdorf, S., Court, D. and Willmott, P. (2013), “Big data: what’s your plan?”, McKinsey Quarterly, No. 2, pp. 40-51.
-
(2013)
McKinsey Quarterly
-
-
Biesdorf, S.1
Court, D.2
Willmott, P.3
-
5
-
-
84891677917
-
Crowdsourcing: how to benefit from (too) many great ideas
-
Blohm, I., Leimeister, J.M. and Krcmar, H. (2013), “Crowdsourcing: how to benefit from (too) many great ideas”, MIS Quarterly Executive, Vol. 12 No. 4, pp. 199-211.
-
(2013)
MIS Quarterly Executive
, vol.12
, Issue.4
, pp. 199-211
-
-
Blohm, I.1
Leimeister, J.M.2
Krcmar, H.3
-
6
-
-
83455179027
-
Are you ready for the era of big data?
-
Brown, B., Chul, M. and Manyika, J. (2011), “Are you ready for the era of big data?”, McKinsey Quarterly, No. 4, pp. 24-27, 30-35.
-
(2011)
McKinsey Quarterly
-
-
Brown, B.1
Chul, M.2
Manyika, J.3
-
7
-
-
84891819472
-
Mobilizing your C-suite for big-data analytics
-
Brown, B., Court, D. and Willmott, P. (2013), “Mobilizing your C-suite for big-data analytics”, McKinsey Quarterly, No. 4, pp. 76-87.
-
(2013)
McKinsey Quarterly
-
-
Brown, B.1
Court, D.2
Willmott, P.3
-
8
-
-
83455203404
-
Seizing the potential of big data
-
Bughin, J., Livingston, J. and Marwaha, S. (2011), “Seizing the potential of big data”, McKinsey Quarterly, No. 4, pp. 103-109.
-
(2011)
McKinsey Quarterly
-
-
Bughin, J.1
Livingston, J.2
Marwaha, S.3
-
9
-
-
77954068456
-
The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis
-
Chen, C., Ibekwe-SanJuan, F. and Hou, J. (2010), “The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis”, Journal of the American Society for Information Science, Vol. 61 No. 7, pp. 1386-1409.
-
(2010)
Journal of the American Society for Information Science
, vol.61
, Issue.7
, pp. 1386-1409
-
-
Chen, C.1
Ibekwe-SanJuan, F.2
Hou, J.3
-
10
-
-
84916597404
-
Business intelligence and analytics: from big data to big impact
-
Chen, H., Chiang, R.H.L. and Storey, V.C. (2012), “Business intelligence and analytics: from big data to big impact”, MIS Quarterly, Vol. 36 No. 4, pp. 1165-1188.
-
(2012)
MIS Quarterly
, vol.36
, Issue.4
, pp. 1165-1188
-
-
Chen, H.1
Chiang, R.H.L.2
Storey, V.C.3
-
11
-
-
84863427375
-
Supply chain risk management: a new methodology for a systematic literature review
-
Colicchia, C. and Strozzi, F. (2012), “Supply chain risk management: a new methodology for a systematic literature review”, Supply Chain Management: An International Journal, Vol. 17 No. 1, pp. 403-418.
-
(2012)
Supply Chain Management: An International Journal
, vol.17
, Issue.1
, pp. 403-418
-
-
Colicchia, C.1
Strozzi, F.2
-
12
-
-
80051803315
-
Data, data everywhere: a special report on managing information
-
February
-
Cukier, K. (2010), “Data, data everywhere: a special report on managing information”, The Economist, 25 February, available at: www.economist.com/node/1555744.
-
(2010)
The Economist
-
-
Cukier, K.1
-
13
-
-
0001227919
-
The intellectual development of management information systems
-
Culnan, M. (1986), “The intellectual development of management information systems”, Management Science, Vol. 32 No. 2, pp. 156-172.
-
(1986)
Management Science
, vol.32
, Issue.2
, pp. 156-172
-
-
Culnan, M.1
-
14
-
-
30344473967
-
Competing on analytics
-
Davenport, T.H. (2006), “Competing on analytics”, Harvard Business Review, Vol. 84 No. 1, pp. 84-93.
-
(2006)
Harvard Business Review
, vol.84
, Issue.1
, pp. 84-93
-
-
Davenport, T.H.1
-
15
-
-
84866661252
-
Data scientist: the sexiest job of the 21st century
-
Davenport, T.H. and Patil, D.J. (2012), “Data scientist: the sexiest job of the 21st century”, Harvard Business Review, Vol. 90 No. 10, pp. 70-76, 128.
-
(2012)
Harvard Business Review
, vol.90
, Issue.10
, pp. 70-76, 128
-
-
Davenport, T.H.1
Patil, D.J.2
-
16
-
-
84869199180
-
How ‘big data’ is different
-
Davenport, T.H., Barth, P. and Bean, R. (2012), “How ‘big data’ is different”, MIT Sloan Management Review, Vol. 54 No. 1, pp. 43-46.
-
(2012)
MIT Sloan Management Review
, vol.54
, Issue.1
, pp. 43-46
-
-
Davenport, T.H.1
Barth, P.2
Bean, R.3
-
17
-
-
84886728968
-
-
November 2012, Scholarly Paper ID 2202843, Social Science Research Network, University of Pennsylvania, :, (accessed
-
Diebold, F.X. (2012), “A personal perspective on the origin(s) and development of ‘big data’: the phenomenon, the term, and the discipline”, Scholarly Paper No. ID 2202843, Social Science Research Network, University of Pennsylvania, available at: http://papers.ssrn.com/sol3/papers.cfm?abstract id=2202843 (accessed 26 November 2012).
-
(2012)
A personal perspective on the origin(s) and development of ‘big data’: the phenomenon, the term, and the discipline
-
-
Diebold, F.X.1
-
18
-
-
84941347880
-
The impact of big data on world-class sustainable manufacturing
-
Dubey, R., Gunasekaran, A., Childe, S.J., Wamba, S.F. and Papadopoulos, T. (2015), “The impact of big data on world-class sustainable manufacturing”, The International Journal of Advanced Manufacturing Technology, Vol. 84 Nos 1-4, pp. 631-645.
-
(2015)
The International Journal of Advanced Manufacturing Technology
, vol.84
, Issue.1-4
, pp. 631-645
-
-
Dubey, R.1
Gunasekaran, A.2
Childe, S.J.3
Wamba, S.F.4
Papadopoulos, T.5
-
19
-
-
84913532143
-
Collaborative forecasting in the food supply chain: a conceptual framework
-
Eksoz, C., Mansouri, A. and Bourlakis, M. (2014), “Collaborative forecasting in the food supply chain: a conceptual framework”, International Journal of Production Economics, Vol. 158, pp. 120-135.
-
(2014)
International Journal of Production Economics
, vol.158
, pp. 120-135
-
-
Eksoz, C.1
Mansouri, A.2
Bourlakis, M.3
-
20
-
-
84899700257
-
On the research frontiers of business management in the context of big data
-
Feng, Z.Y., Guo, X.H. and Zeng, D.J. (2013), “On the research frontiers of business management in the context of big data”, Journal of Management Sciences in China, Vol. 16 No. 1, pp. 1-9.
-
(2013)
Journal of Management Sciences in China
, vol.16
, Issue.1
, pp. 1-9
-
-
Feng, Z.Y.1
Guo, X.H.2
Zeng, D.J.3
-
21
-
-
84929519811
-
The Big Kahuna
-
Flory, M.M. (2012), “The Big Kahuna”, Marketing Research, Vol. 24 No. 2, p. 3.
-
(2012)
Marketing Research
, vol.24
, Issue.2
, pp. 3
-
-
Flory, M.M.1
-
23
-
-
84919389514
-
Beyond the hype: big data concepts, methods, and analytics
-
Gandomi, A. and Haider, M. (2015), “Beyond the hype: big data concepts, methods, and analytics”, International Journal of Information Management, Vol. 35 No. 2, pp. 137-144.
-
(2015)
International Journal of Information Management
, vol.35
, Issue.2
, pp. 137-144
-
-
Gandomi, A.1
Haider, M.2
-
24
-
-
84878195422
-
-
February 2013, IDC Analyze the Future, IDC iView, :, (accessed
-
Gantz, J. and Reinsel, D. (2012), “The Digital Universe in 2020: big data, bigger digital shadows, and biggest growth in the Far East”, IDC Analyze the Future, IDC iView, pp. 1-16, available at: www.emc.com/collateral/analyst-reports/idc-digital-universe-western-europe.pdf (accessed February 2013).
-
(2012)
The Digital Universe in 2020: big data, bigger digital shadows, and biggest growth in the Far East
, pp. 1-16
-
-
Gantz, J.1
Reinsel, D.2
-
25
-
-
0015493305
-
Citation analysis as a tool in journal evaluation
-
Garfield, E. (1972), “Citation analysis as a tool in journal evaluation”, Science, Vol. 178, pp. 471-479.
-
(1972)
Science
, vol.178
, pp. 471-479
-
-
Garfield, E.1
-
26
-
-
84894137546
-
-
July 2013, :, (accessed
-
Gartner (2012), “Big data”, available at: www.gartner.com/it-glossary/bigdata/ (accessed 9 July 2013).
-
(2012)
Big data
-
-
-
27
-
-
84872718466
-
Big data: the next big thing in innovation
-
Gobble, M.M. (2013), “Big data: the next big thing in innovation”, Research Technology Management, Vol. 56 No. 1, pp. 64-66.
-
(2013)
Research Technology Management
, vol.56
, Issue.1
, pp. 64-66
-
-
Gobble, M.M.1
-
28
-
-
84921786967
-
Performance measures and metrics in outsourcing decisions: a review for research and applications
-
Gunasekaran, A., Irani, Z., Choy, K.-L., Filippi, L. and Papadopoulos, T. (2015), “Performance measures and metrics in outsourcing decisions: a review for research and applications”, International Journal of Production Economics, Vol. 161, pp. 153-166.
-
(2015)
International Journal of Production Economics
, vol.161
, pp. 153-166
-
-
Gunasekaran, A.1
Irani, Z.2
Choy, K.-L.3
Filippi, L.4
Papadopoulos, T.5
-
29
-
-
84901705764
-
Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications
-
Hazen, B.T., Boone, C.A., Ezell, J.D. and Jones-Farmer, L.A. (2014), “Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications”, International Journal of Production Economics, Vol. 154, pp. 72-80.
-
(2014)
International Journal of Production Economics
, vol.154
, pp. 72-80
-
-
Hazen, B.T.1
Boone, C.A.2
Ezell, J.D.3
Jones-Farmer, L.A.4
-
30
-
-
84925608116
-
Promises and challenges of big data computing in health sciences
-
Huang, T., Lan, L., Fang, X., An, P., Min, J. and Wang, F. (2015), “Promises and challenges of big data computing in health sciences”, Big Data Research, Vol. 2 No. 1, pp. 2-11.
-
(2015)
Big Data Research
, vol.2
, Issue.1
, pp. 2-11
-
-
Huang, T.1
Lan, L.2
Fang, X.3
An, P.4
Min, J.5
Wang, F.6
-
31
-
-
78651533629
-
The pathologies of big data
-
Jacobs, A. (2009), “The pathologies of big data”, Magazine Queue-Data, Vol. 7 No. 6, p. 10.
-
(2009)
Magazine Queue-Data
, vol.7
, Issue.6
, pp. 10
-
-
Jacobs, A.1
-
32
-
-
84929170243
-
Significance and challenges of big data research
-
Jin, X., Wah, B.W., Cheng, X. and Wang, Y. (2015), “Significance and challenges of big data research”, Big Data Research, Vol. 2 No. 2, pp. 59-64.
-
(2015)
Big Data Research
, vol.2
, Issue.2
, pp. 59-64
-
-
Jin, X.1
Wah, B.W.2
Cheng, X.3
Wang, Y.4
-
33
-
-
84878561276
-
-
September 2012, :, (accessed
-
Kalil, T. (2012), “Big data is a big deal”, available at: www.whitehouse.gov/blog/2012/03/29/big-data-big-deal (accessed September 2012).
-
(2012)
Big data is a big deal
-
-
Kalil, T.1
-
34
-
-
0024640140
-
An algorithm for drawing general undirected graphs
-
Kamada, T. and Kawai, S. (1989), “An algorithm for drawing general undirected graphs”, Information Processing Letters, Vol. 31 No. 1, pp. 7-15.
-
(1989)
Information Processing Letters
, vol.31
, Issue.1
, pp. 7-15
-
-
Kamada, T.1
Kawai, S.2
-
35
-
-
84899458050
-
Data quality management, data usage experience and acquisition intention of big data analytics
-
Kwon, O., Lee, N. and Shin, B. (2014), “Data quality management, data usage experience and acquisition intention of big data analytics”, International Journal of Information Management, Vol. 34 No. 3, pp. 387-394.
-
(2014)
International Journal of Information Management
, vol.34
, Issue.3
, pp. 387-394
-
-
Kwon, O.1
Lee, N.2
Shin, B.3
-
36
-
-
79952320192
-
Big data: analytics and the path from insights to value
-
Lavalle, S., Lesser, E., Shockley, R., Hopkins, M.S. and Kruschwitz, N. (2011), “Big data: analytics and the path from insights to value”, MIT Sloan Management Review, Vol. 52 No. 2, pp. 21-32.
-
(2011)
MIT Sloan Management Review
, vol.52
, Issue.2
, pp. 21-32
-
-
Lavalle, S.1
Lesser, E.2
Shockley, R.3
Hopkins, M.S.4
Kruschwitz, N.5
-
37
-
-
84897704756
-
A cubic framework for the chief data officer: succeeding in a world of big data
-
Lee, Y.W., Madnick, S.E., Wang, R.Y., Wang, F.L. and Zhang, H. (2014), “A cubic framework for the chief data officer: succeeding in a world of big data”, MIS Quarterly Executive, Vol. 13 No. 1, pp. 1-13.
-
(2014)
MIS Quarterly Executive
, vol.13
, Issue.1
, pp. 1-13
-
-
Lee, Y.W.1
Madnick, S.E.2
Wang, R.Y.3
Wang, F.L.4
Zhang, H.5
-
38
-
-
33749416584
-
Co-occurrence matrices and their applications in information science: extending ACA to the web environment
-
Leydesdorff, L. and Vaughan, L. (2006), “Co-occurrence matrices and their applications in information science: extending ACA to the web environment”, Journal of the American Society for Information Science & Technology, Vol. 57 No. 12, pp. 1616-1628.
-
(2006)
Journal of the American Society for Information Science & Technology
, vol.57
, Issue.12
, pp. 1616-1628
-
-
Leydesdorff, L.1
Vaughan, L.2
-
39
-
-
84866640011
-
Big data: the management revolution
-
McAfee, A. and Brynjolfsson, E. (2012a), “Big data: the management revolution”, Harvard Business Review, Vol. 90 No. 10, p. 4.
-
(2012)
Harvard Business Review
, vol.90
, Issue.10
, pp. 4
-
-
McAfee, A.1
Brynjolfsson, E.2
-
40
-
-
84866640011
-
Big data: the management revolution
-
McAfee, A. and Brynjolfsson, E. (2012b), “Big data: the management revolution”, Harvard Business Review, Vol. 90 No. 10, pp. 60-66, 68, 128.
-
(2012)
Harvard Business Review
, vol.90
, Issue.10
-
-
McAfee, A.1
Brynjolfsson, E.2
-
41
-
-
84963715104
-
Unlocking the big promise of big data
-
McGahan, A. (2013), “Unlocking the big promise of big data”, Rotman Management, Vol. 6 No. 1, pp. 53-57.
-
(2013)
Rotman Management
, vol.6
, Issue.1
, pp. 53-57
-
-
McGahan, A.1
-
42
-
-
84989591524
-
Problems of citation analysis: a critical review
-
MacRoberts, M.H. and MacRoberts, B.R. (1989), “Problems of citation analysis: a critical review”, Journal of the American Society for Information Science, Vol. 40 No. 5, pp. 342-349.
-
(1989)
Journal of the American Society for Information Science
, vol.40
, Issue.5
, pp. 342-349
-
-
MacRoberts, M.H.1
MacRoberts, B.R.2
-
43
-
-
72849140862
-
Problems of citation analysis: a study of uncited and seldom-sited influences
-
MacRoberts, M.H. and MacRoberts, B.R. (2010), “Problems of citation analysis: a study of uncited and seldom-sited influences”, Journal of the American Society for Information Science and Technology, Vol. 61 No. 1, pp. 1-12.
-
(2010)
Journal of the American Society for Information Science and Technology
, vol.61
, Issue.1
, pp. 1-12
-
-
MacRoberts, M.H.1
MacRoberts, B.R.2
-
45
-
-
81055138684
-
-
McKinsey Global Institute
-
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A.H. (2011), Big Data: the Next Frontier for Innovation, Competition and Productivity, McKinsey Global Institute.
-
(2011)
Big Data: the Next Frontier for Innovation, Competition and Productivity
-
-
Manyika, J.1
Chui, M.2
Brown, B.3
Bughin, J.4
Dobbs, R.5
Roxburgh, C.6
Byers, A.H.7
-
46
-
-
84876494973
-
-
Houghton Mifflin Harcourt, New York, NY
-
Mayer-Schönberger, V. and Cukier, K. (2013), Big Data: A Revolution that will Transform how we Live, Work, and Think, Houghton Mifflin Harcourt, New York, NY.
-
(2013)
Big Data: A Revolution that will Transform how we Live, Work, and Think
-
-
Mayer-Schönberger, V.1
Cukier, K.2
-
47
-
-
84874754580
-
Big data management: concepts, techniques and challenges
-
Meng, X.F. and Ci, X. (2013), “Big data management: concepts, techniques and challenges”, Journal of Computer Research and Development, Vol. 50 No. 1, pp. 146-169.
-
(2013)
Journal of Computer Research and Development
, vol.50
, Issue.1
, pp. 146-169
-
-
Meng, X.F.1
Ci, X.2
-
48
-
-
84944243431
-
Big data: opportunities and challenges
-
Mishra, R. and Sharma, R. (2015), “Big data: opportunities and challenges”, International Journal of Computer Science and Mobile Computing, Vol. 4 No. 6, pp. 27-35.
-
(2015)
International Journal of Computer Science and Mobile Computing
, vol.4
, Issue.6
, pp. 27-35
-
-
Mishra, R.1
Sharma, R.2
-
49
-
-
84892771609
-
-
November 2013, :, (accessed
-
Nature (2008), “Big data”, available at: www.nature.com/news/specials/bigdata/index.html (accessed 5 November 2013).
-
(2008)
Big data
-
-
-
50
-
-
84929505229
-
-
Oracle, Redwood Shores, CA
-
Oracle (2012), Big Data for the Enterprise, Oracle, Redwood Shores, CA.
-
(2012)
Big Data for the Enterprise
-
-
-
51
-
-
84929517551
-
Smart analytics: how marketing drives short-term and long-term growth
-
July
-
Perrey, J., Spillecke, D. and Umblijs, A. (2013), “Smart analytics: how marketing drives short-term and long-term growth”, McKinsey Quarterly, July, pp. 00425-3.
-
(2013)
McKinsey Quarterly
, pp. 423-425
-
-
Perrey, J.1
Spillecke, D.2
Umblijs, A.3
-
52
-
-
77749271958
-
How to use Bibexcel for various types of bibliometric studies
-
Åström, F., Danell, R., Larsen, B. and Wiborg Schneider, J., and (Eds), International Society for Scientometrics and Informetics, Leuven
-
Persson, O., Danell, R. and Schneider, J.W. (2009), “How to use Bibexcel for various types of bibliometric studies”, in Åström, F., Danell, R., Larsen, B. and Wiborg Schneider, J. (Eds), Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at his 60th Birthday, Vol. 5, International Society for Scientometrics and Informetics, Leuven, pp. 9-24.
-
(2009)
Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at his 60th Birthday
, vol.5
, pp. 9-24
-
-
Persson, O.1
Danell, R.2
Schneider, J.W.3
-
53
-
-
33748686150
-
Operations management themes, concepts and relationships: a forward retrospective of the IJOPM
-
Pilkington, A. and Fitzgerald, R. (2006), “Operations management themes, concepts and relationships: a forward retrospective of the IJOPM”, International Journal of Operations and Production Management, Vol. 26 No. 11, pp. 1255-1275.
-
(2006)
International Journal of Operations and Production Management
, vol.26
, Issue.11
, pp. 1255-1275
-
-
Pilkington, A.1
Fitzgerald, R.2
-
54
-
-
0033477969
-
Is production and operations management a discipline? A citation/co-citation study
-
Pilkington, A. and Liston-Heyes, C. (1999), “Is production and operations management a discipline? A citation/co-citation study”, International Journal of Operations and Production Management, Vol. 19 No. 1, pp. 7-20.
-
(1999)
International Journal of Operations and Production Management
, vol.19
, Issue.1
, pp. 7-20
-
-
Pilkington, A.1
Liston-Heyes, C.2
-
55
-
-
62649172584
-
The evolution of the intellectual structure of operations management – 1980-2006: a citation/co-citation analysis
-
Pilkington, A. and Meredith, J. (2009), “The evolution of the intellectual structure of operations management – 1980-2006: a citation/co-citation analysis”, Journal of Operations Management, Vol. 27 No. 3, pp. 185-202.
-
(2009)
Journal of Operations Management
, vol.27
, Issue.3
, pp. 185-202
-
-
Pilkington, A.1
Meredith, J.2
-
56
-
-
84941248522
-
A novel intelligent approach for predicting atherosclerotic individuals from big data for healthcare
-
Priya, M. and Ranjith Kumar, P. (2015), “A novel intelligent approach for predicting atherosclerotic individuals from big data for healthcare”, International Journal of Production Research, Vol. 53 No. 24, pp. 7517-7532.
-
(2015)
International Journal of Production Research
, vol.53
, Issue.24
, pp. 7517-7532
-
-
Priya, M.1
Ranjith Kumar, P.2
-
57
-
-
84925687964
-
The current status and challenges in computational analysis of genomic big data
-
Qin, Y., Yalamanchili, H.K., Qin, J., Yan, B. and Wang, J. (2015), “The current status and challenges in computational analysis of genomic big data”, Big Data Research, Vol. 2 No. 1, pp. 12-18.
-
(2015)
Big Data Research
, vol.2
, Issue.1
, pp. 12-18
-
-
Qin, Y.1
Yalamanchili, H.K.2
Qin, J.3
Yan, B.4
Wang, J.5
-
58
-
-
4644273893
-
Changes in the intellectual structure of strategic management research: a bibliometric study of the strategic management Journal, 1980-2000
-
Ramos-Rodríguez, A.R. and Ruiz-Navarro, J. (2004), “Changes in the intellectual structure of strategic management research: a bibliometric study of the strategic management Journal, 1980-2000”, Strategic Management Journal, Vol. 25 No. 10, pp. 981-1004.
-
(2004)
Strategic Management Journal
, vol.25
, Issue.10
, pp. 981-1004
-
-
Ramos-Rodríguez, A.R.1
Ruiz-Navarro, J.2
-
59
-
-
84888387200
-
You may not need big data after all
-
Ross, J.W., Beath, C.M. and Quaadgras, A. (2013), “You may not need big data after all”, Harvard Business Review, Vol. 91 No. 12, p. 90.
-
(2013)
Harvard Business Review
, vol.91
, Issue.12
, pp. 90
-
-
Ross, J.W.1
Beath, C.M.2
Quaadgras, A.3
-
60
-
-
84863610828
-
-
p., TDWI Best Practices Report
-
Russom, P. (2011), “Big data analytics”, TDWI Best Practices Report, Vol. 19, Fourth Quarter, p. 40.
-
(2011)
Big data analytics
, vol.19
, Issue.Fourth Quarter
, pp. 40
-
-
Russom, P.1
-
61
-
-
84925672341
-
Data science, predictive analytics, and big data in supply chain management: current state and future potential
-
Schoenherr, T. and Speier-Pero, C. (2015), “Data science, predictive analytics, and big data in supply chain management: current state and future potential”, Journal of Business Logistics, Vol. 36 No. 1, pp. 120-132.
-
(2015)
Journal of Business Logistics
, vol.36
, Issue.1
, pp. 120-132
-
-
Schoenherr, T.1
Speier-Pero, C.2
-
62
-
-
84887085289
-
-
Institute for Business Value, New York: NY
-
Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D. and Tufano, P.P. (2012), Analytics: The Real-World Use of Big Data, IBM, Institute for Business Value, New York, NY.
-
(2012)
Analytics: The Real-World Use of Big Data, IBM
-
-
Schroeck, M.1
Shockley, R.2
Smart, J.3
Romero-Morales, D.4
Tufano, P.P.5
-
63
-
-
84874684489
-
-
November 2013, :, (accessed
-
Science (2011), “Special online collection: dealing with data”, available at: www.sciencemag.org/site/special/data/ (accessed 5 November 2013).
-
(2011)
Special online collection: dealing with data
-
-
-
64
-
-
84973751576
-
The relative importance of journals used in management research: an alternative ranking
-
Sharplin, A. and Mabry, R. (1985), “The relative importance of journals used in management research: an alternative ranking”, Human Relations, Vol. 38 No. 2, pp. 139-149.
-
(1985)
Human Relations
, vol.38
, Issue.2
, pp. 139-149
-
-
Sharplin, A.1
Mabry, R.2
-
65
-
-
0015640298
-
Co-citation in the scientific literature: a new measure of the relationship between two documents
-
Small, H. (1973), “Co-citation in the scientific literature: a new measure of the relationship between two documents”, Journal of the American Society for Information Science, Vol. 24 No. 4, pp. 265-269.
-
(1973)
Journal of the American Society for Information Science
, vol.24
, Issue.4
, pp. 265-269
-
-
Small, H.1
-
66
-
-
84929506822
-
Scientific research: how many paradigms?
-
Strawn, G.O. (2012), “Scientific research: how many paradigms?”, Educause Review, Vol. 47 No. 3, pp. 26-34.
-
(2012)
Educause Review
, vol.47
, Issue.3
, pp. 26-34
-
-
Strawn, G.O.1
-
67
-
-
84896636046
-
The future revolution on big data
-
January 2016, :, (accessed
-
Syed, A., Gillela, K. and Venugopal, C. (2013), “The future revolution on big data”, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, pp. 2446-2451, available at: www.ijarcce.com/upload/2013/june/44-Abdul%20RaheemThe%20Future%20Revolution%20on%20Big%20Data.pdf (accessed 5 January 2016).
-
(2013)
International Journal of Advanced Research in Computer and Communication Engineering
, vol.2
, pp. 2446-2451
-
-
Syed, A.1
Gillela, K.2
Venugopal, C.3
-
69
-
-
0030284296
-
The relative importance of journals used in operations management research: a citation analysis
-
Vokurka, R.J. (1996), “The relative importance of journals used in operations management research: a citation analysis”, Journal of Operations Management, Vol. 14 No. 4, pp. 345-355.
-
(1996)
Journal of Operations Management
, vol.14
, Issue.4
, pp. 345-355
-
-
Vokurka, R.J.1
-
70
-
-
84900822860
-
Click here for a data scientist: big data, predictive analytics, and theory development in the era of a maker movement supply chain
-
Waller, M.A. and Fawcett, S.E. (2013a), “Click here for a data scientist: big data, predictive analytics, and theory development in the era of a maker movement supply chain”, Journal of Business Logistics, Vol. 34 No. 4, pp. 249-252.
-
(2013)
Journal of Business Logistics
, vol.34
, Issue.4
, pp. 249-252
-
-
Waller, M.A.1
Fawcett, S.E.2
-
71
-
-
84900796645
-
Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
-
Waller, M.A. and Fawcett, S.E. (2013b), “Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management”, Journal of Business Logistics, Vol. 34 No. 2, pp. 77-84.
-
(2013)
Journal of Business Logistics
, vol.34
, Issue.2
, pp. 77-84
-
-
Waller, M.A.1
Fawcett, S.E.2
-
72
-
-
84929509763
-
How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study
-
Wamba, S.F., Akter, S., Edwards, A., Chopin, G. and Gnanzou, D. (2015), “How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study”, International Journal of Production Economics, Vol. 165, pp. 234-246.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 234-246
-
-
Wamba, S.F.1
Akter, S.2
Edwards, A.3
Chopin, G.4
Gnanzou, D.5
-
73
-
-
84871427783
-
Digital workplaces: vision and reality
-
White, M. (2012), “Digital workplaces: vision and reality”, Business Information Review, Vol. 29 No. 4, pp. 205-214.
-
(2012)
Business Information Review
, vol.29
, Issue.4
, pp. 205-214
-
-
White, M.1
-
74
-
-
85022140145
-
How big data and analytics reshape the wearable device market – the context of e-health
-
Wu, J., Li, H., Lin, Z. and Goh, K.-Y. (2015), “How big data and analytics reshape the wearable device market – the context of e-health”, International Journal of Production Research, pp. 1-15.
-
(2015)
International Journal of Production Research
, pp. 1-15
-
-
Wu, J.1
Li, H.2
Lin, Z.3
Goh, K.-Y.4
-
75
-
-
84941254409
-
Big data analytics for physical internet-based intelligent manufacturing shop floors
-
Zhong, R.Y., Xu, C., Chen, C. and Huang, G.Q. (2017), “Big data analytics for physical internet-based intelligent manufacturing shop floors”, International Journal of Production Research, Vol. 55 No. 9, pp. 2610-2621.
-
(2017)
International Journal of Production Research
, vol.55
, Issue.9
, pp. 2610-2621
-
-
Zhong, R.Y.1
Xu, C.2
Chen, C.3
Huang, G.Q.4
-
76
-
-
84929502678
-
A big data approach for logistics trajectory discovery from RFID-enabled production data
-
Zhong, R.Y., Huang, G.Q., Lan, S., Dai, Q.Y., Chen, X. and Zhang, T. (2015), “A big data approach for logistics trajectory discovery from RFID-enabled production data”, International Journal of Production Economics, Vol. 165, pp. 260-272.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 260-272
-
-
Zhong, R.Y.1
Huang, G.Q.2
Lan, S.3
Dai, Q.Y.4
Chen, X.5
Zhang, T.6
-
77
-
-
84955413763
-
Efficient machine learning for big data: a review
-
Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K. and Taha, K. (2014), “Efficient machine learning for big data: a review”, Big Data Research, Vol. 2 No. 3, pp. 87-93.
-
(2014)
Big Data Research
, vol.2
, Issue.3
, pp. 87-93
-
-
Al-Jarrah, O.Y.1
Yoo, P.D.2
Muhaidat, S.3
Karagiannidis, G.K.4
Taha, K.5
-
78
-
-
84925591673
-
ScaDiPaSi: an effective scalable and distributable MapReduce-Based method to find patient similarity on huge healthcare networks
-
Barkhordari, M. and Niamanesh, M. (2015), “ScaDiPaSi: an effective scalable and distributable MapReduce-Based method to find patient similarity on huge healthcare networks”, Big Data Research, Vol. 2 No. 1, pp. 19-27.
-
(2015)
Big Data Research
, vol.2
, Issue.1
, pp. 19-27
-
-
Barkhordari, M.1
Niamanesh, M.2
-
79
-
-
84929166422
-
Big data for open digital innovation – a research roadmap
-
Brunswicker, S., Bertino, E. and Matei, S. (2015), “Big data for open digital innovation – a research roadmap”, Big Data Research, Vol. 2 No. 2, pp. 53-58.
-
(2015)
Big Data Research
, vol.2
, Issue.2
, pp. 53-58
-
-
Brunswicker, S.1
Bertino, E.2
Matei, S.3
-
80
-
-
84929513110
-
Insights from hashtag #supply chain and Twitter analytics: considering Twitter and Twitter data for supply chain practice and research
-
Chae, B. (2015), “Insights from hashtag #supply chain and Twitter analytics: considering Twitter and Twitter data for supply chain practice and research”, International Journal of Production Economics, Vol. 165 No. 1, pp. 247-259.
-
(2015)
International Journal of Production Economics
, vol.165
, Issue.1
, pp. 247-259
-
-
Chae, B.1
-
81
-
-
85022142510
-
Predicting consumer product demands via big data: the roles of online promotional marketing and online reviews
-
Chong, A.Y.L., Ch’ng, E., Liu, M.J. and Li, B. (2015), “Predicting consumer product demands via big data: the roles of online promotional marketing and online reviews”, International Journal of Production Research, pp. 1-15.
-
(2015)
International Journal of Production Research
, pp. 1-15
-
-
Chong, A.Y.L.1
Ch’ng, E.2
Liu, M.J.3
Li, B.4
-
82
-
-
84947043463
-
Privacy aware access control for big data: a research roadmap
-
Colombo, P. and Ferrari, E. (2015), “Privacy aware access control for big data: a research roadmap”, Big Data Research, Vol. 2 No. 4, pp. 145-154.
-
(2015)
Big Data Research
, vol.2
, Issue.4
, pp. 145-154
-
-
Colombo, P.1
Ferrari, E.2
-
83
-
-
84906748958
-
When big data goes lean
-
Dhawan, R., Singh, K. and Tuteja, A. (2014), “When big data goes lean”, McKinsey Quarterly, Vol. 24 No. 2, pp. 97-105.
-
(2014)
McKinsey Quarterly
, vol.24
, Issue.2
, pp. 97-105
-
-
Dhawan, R.1
Singh, K.2
Tuteja, A.3
-
84
-
-
84929507264
-
Managing a big data project: the case of Ramco Cements Limited
-
Dutta, D. and Bose, I. (2015), “Managing a big data project: the case of Ramco Cements Limited”, International Journal of Production Economics, Vol. 165, pp. 293-306.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 293-306
-
-
Dutta, D.1
Bose, I.2
-
85
-
-
84949320986
-
Big data consumer analytics and the transformation of marketing
-
Erevelles, S., Fukawa, N. and Swayne, L. (2016), “Big data consumer analytics and the transformation of marketing”, Journal of Business Research, Vol. 69 No. 2, pp. 897-904.
-
(2016)
Journal of Business Research
, vol.69
, Issue.2
, pp. 897-904
-
-
Erevelles, S.1
Fukawa, N.2
Swayne, L.3
-
86
-
-
84925679859
-
Demystifying big data analytics for business intelligence through the lens of marketing mix
-
Fan, S., Lau, R.Y.K. and Zhao, J.L. (2015), “Demystifying big data analytics for business intelligence through the lens of marketing mix”, Big Data Research, Vol. 2 No. 1, pp. 28-32.
-
(2015)
Big Data Research
, vol.2
, Issue.1
, pp. 28-32
-
-
Fan, S.1
Lau, R.Y.K.2
Zhao, J.L.3
-
87
-
-
84907993905
-
Supply chain game changers – mega, nano, and virtual trends – and forces that impede supply chain design (i.e. building a winning team)
-
Fawcett, S.E. and Waller, M.A. (2014), “Supply chain game changers – mega, nano, and virtual trends – and forces that impede supply chain design (i.e. building a winning team)”, Journal of Business Logistics, Vol. 35 No. 3, pp. 157-164.
-
(2014)
Journal of Business Logistics
, vol.35
, Issue.3
, pp. 157-164
-
-
Fawcett, S.E.1
Waller, M.A.2
-
88
-
-
84898009578
-
Reading global clients’ signals
-
Gloor, P.A. and Giacomelli, G. (2014), “Reading global clients’ signals”, MIT Sloan Management Review, Vol. 55 No. 3, pp. 23-29.
-
(2014)
MIT Sloan Management Review
, vol.55
, Issue.3
, pp. 23-29
-
-
Gloor, P.A.1
Giacomelli, G.2
-
89
-
-
84918793619
-
Efficient indexing and query processing of model-view sensor data in the cloud
-
Guo, T., Papaioannou, T.G. and Aberer, K. (2014), “Efficient indexing and query processing of model-view sensor data in the cloud”, Big Data Research, Vol. 1, pp. 52-65.
-
(2014)
Big Data Research
, vol.1
, pp. 52-65
-
-
Guo, T.1
Papaioannou, T.G.2
Aberer, K.3
-
90
-
-
84893124408
-
Thriving in a big data world
-
Hayashi, A.M. (2014), “Thriving in a big data world”, MIT Sloan Management Review, Vol. 55 No. 2, pp. 35-39.
-
(2014)
MIT Sloan Management Review
, vol.55
, Issue.2
, pp. 35-39
-
-
Hayashi, A.M.1
-
91
-
-
85022151881
-
Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect
-
Hofmann, E. (2015), “Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect”, International Journal of Production Research, pp. 1-19.
-
(2015)
International Journal of Production Research
, pp. 1-19
-
-
Hofmann, E.1
-
92
-
-
84866696278
-
From the editor: big data for skeptics
-
Ignatius, A. (2012), “From the editor: big data for skeptics”, Harvard Business Review, Vol. 90 No. 10, p. 1-2.
-
(2012)
Harvard Business Review
, vol.90
, Issue.10
, pp. 1-2
-
-
Ignatius, A.1
-
93
-
-
84930250427
-
Advanced predictive-analysis-based decision support for collaborative logistics networks
-
Ilie-Zudor, E., Ekart, A., Kemeny, Z., Buckingham, C., Welch, P. and Monostori, L. (2015), “Advanced predictive-analysis-based decision support for collaborative logistics networks”, Supply Chain Management: An International Journal, Vol. 20 No. 4, pp. 369-388.
-
(2015)
Supply Chain Management: An International Journal
, vol.20
, Issue.4
, pp. 369-388
-
-
Ilie-Zudor, E.1
Ekart, A.2
Kemeny, Z.3
Buckingham, C.4
Welch, P.5
Monostori, L.6
-
94
-
-
84929224098
-
Big data and science: myths and reality
-
Jagadish, H.V. (2015), “Big data and science: myths and reality”, Big Data Research, Vol. 2 No. 2, pp. 49-52.
-
(2015)
Big Data Research
, vol.2
, Issue.2
, pp. 49-52
-
-
Jagadish, H.V.1
-
95
-
-
84869436742
-
Why detailed data is as important as big data
-
Kiron, D. (2012), “Why detailed data is as important as big data”, MIT Sloan Management Review, Vol. 53 No. 4, pp. 1-3.
-
(2012)
MIT Sloan Management Review
, vol.53
, Issue.4
, pp. 1-3
-
-
Kiron, D.1
-
96
-
-
84929159979
-
Geospatial big data: challenges and opportunities
-
Lee, J.-G. and Kang, M. (2015), “Geospatial big data: challenges and opportunities”, Big Data Research, Vol. 2 No. 2, pp. 74-81.
-
(2015)
Big Data Research
, vol.2
, Issue.2
, pp. 74-81
-
-
Lee, J.-G.1
Kang, M.2
-
97
-
-
83455178910
-
Astrazeneca’s ‘big data’ partnership
-
Lelinski, M. (2011), “Astrazeneca’s ‘big data’ partnership”, McKinsey Quarterly, No. 4, pp. 104-107.
-
(2011)
McKinsey Quarterly
-
-
Lelinski, M.1
-
98
-
-
85012924087
-
Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain
-
Li, D. and Wang, X. (2015), “Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain”, International Journal of Production Research, pp. 1-15.
-
(2015)
International Journal of Production Research
, pp. 1-15
-
-
Li, D.1
Wang, X.2
-
99
-
-
84918813362
-
GDPS: an efficient approach for skyline queries over distributed uncertain data
-
Li, X., Wang, Y., Li, X., Wang, X. and Yu, J. (2014), “GDPS: an efficient approach for skyline queries over distributed uncertain data”, Big Data Research, Vol. 1, pp. 23-26.
-
(2014)
Big Data Research
, vol.1
, pp. 23-26
-
-
Li, X.1
Wang, Y.2
Li, X.3
Wang, X.4
Yu, J.5
-
100
-
-
84936941103
-
Ethical issues in the big data industry
-
Martin, K.E. (2015), “Ethical issues in the big data industry”, MIS Quarterly Executive, Vol. 14 No. 2, pp. 67-85.
-
(2015)
MIS Quarterly Executive
, vol.14
, Issue.2
, pp. 67-85
-
-
Martin, K.E.1
-
101
-
-
84891722382
-
Data monetization: lessons from a retailer’s journey
-
Najjar, M.S. and Kettinger, W.J. (2013), “Data monetization: lessons from a retailer’s journey”, MIS Quarterly Executive, Vol. 12 No. 4, pp. 213-225.
-
(2013)
MIS Quarterly Executive
, vol.12
, Issue.4
, pp. 213-225
-
-
Najjar, M.S.1
Kettinger, W.J.2
-
102
-
-
84891723294
-
Exploiting big data from mobile device sensor-based apps: challenges and benefits
-
O’Leary, D.E. (2013), “Exploiting big data from mobile device sensor-based apps: challenges and benefits”, MIS Quarterly Executive, Vol. 12 No. 4, pp. 179-187.
-
(2013)
MIS Quarterly Executive
, vol.12
, Issue.4
, pp. 179-187
-
-
O’Leary, D.E.1
-
103
-
-
84929502898
-
The value of big data in servitization
-
Opresnik, D. and Taisch, M. (2015), “The value of big data in servitization”, International Journal of Production Economics, Vol. 165, pp. 174-184.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 174-184
-
-
Opresnik, D.1
Taisch, M.2
-
104
-
-
84883298778
-
Big data in the age of the telegraph
-
Rosenthal, C. (2013), “Big data in the age of the telegraph”, McKinsey Quarterly, No. 1, pp. 13-18.
-
(2013)
McKinsey Quarterly
-
-
Rosenthal, C.1
-
105
-
-
84929515623
-
Generalized optimal wavelet decomposing algorithm for big financial data
-
Sun, E.W., Chen, Y.-T. and Yu, M.-T. (2015), “Generalized optimal wavelet decomposing algorithm for big financial data”, International Journal of Production Economics, Vol. 165, pp. 194-214.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 194-214
-
-
Sun, E.W.1
Chen, Y.-T.2
Yu, M.-T.3
-
106
-
-
84873694395
-
A survey of models and algorithms for social influence analysis
-
Aggarwal, C.C.and (Ed.), Springer
-
Sun, J. and Tang, J. (2011), “A survey of models and algorithms for social influence analysis”, in Aggarwal, C.C. (Ed.), Social Network Data Analytics, Springer, pp. 177-214.
-
(2011)
Social Network Data Analytics
, pp. 177-214
-
-
Sun, J.1
Tang, J.2
-
107
-
-
84929502650
-
Leverage RAF to find domain experts on research social network services: a big data analytics methodology with MapReduce framework
-
Sun, J., Xu, W., Ma, J. and Sun, J. (2015), “Leverage RAF to find domain experts on research social network services: a big data analytics methodology with MapReduce framework”, International Journal of Production Economics, Vol. 165, pp. 185-193.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 185-193
-
-
Sun, J.1
Xu, W.2
Ma, J.3
Sun, J.4
-
108
-
-
84929517525
-
Harvesting big data to enhance supply chain innovation capabilities: an analytic infrastructure based on deduction graph
-
Tan, K.H., Zhan, Y., Ji, G., Ye, F. and Chang, C. (2015), “Harvesting big data to enhance supply chain innovation capabilities: an analytic infrastructure based on deduction graph”, International Journal of Production Economics, Vol. 165, pp. 223-233.
-
(2015)
International Journal of Production Economics
, vol.165
, pp. 223-233
-
-
Tan, K.H.1
Zhan, Y.2
Ji, G.3
Ye, F.4
Chang, C.5
-
109
-
-
84929519537
-
A discriminative and semantic feature selection method for text categorization
-
Zong, W., Wu, F., Chu, L.-K. and Sculli, D. (2015), “A discriminative and semantic feature selection method for text categorization”, International Journal of Production Economics, Vol. 165 No. 1, pp. 215-222.
-
(2015)
International Journal of Production Economics
, vol.165
, Issue.1
, pp. 215-222
-
-
Zong, W.1
Wu, F.2
Chu, L.-K.3
Sculli, D.4
-
110
-
-
84918806319
-
FlexAnalytics: a flexible data analytics framework for big data applications with I/O performance improvement
-
Zou, H., Yu, Y., Tang, W. and Chen, H.W.M. (2014), “FlexAnalytics: a flexible data analytics framework for big data applications with I/O performance improvement”, Big Data Research, Vol. 1, pp. 4-13.
-
(2014)
Big Data Research
, vol.1
, pp. 4-13
-
-
Zou, H.1
Yu, Y.2
Tang, W.3
Chen, H.W.M.4
|