메뉴 건너뛰기




Volumn 50, Issue 1, 2013, Pages 146-169

Big data management: Concepts, techniques and challenges

Author keywords

Big data; Cloud computing; Data analysis

Indexed keywords

BIG DATUM; DATA TYPE; DATABASE RESEARCH; HUMAN SOCIETY; INTERNET OF THINGS (IOT); KEY TECHNIQUES; NEW SERVICES; SOCIAL NETWORKS; STATE OF THE ART;

EID: 84874754580     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (396)

References (167)
  • 1
    • 84889071369 scopus 로고    scopus 로고
    • Big data
    • 2012-10-02
    • Nature. Big Data [EB/OL]. [2012-10-02]. http://www.nature.com/news/specials/bigdata/index.html
  • 2
    • 84870402156 scopus 로고    scopus 로고
    • Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society
    • 2012-10-02
    • Bryant R E, Katz R H, Lazowska E D. Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http://www.cra.org/ccc/docs/init/Big_Data.pdf
    • Bryant, R.E.1    Katz, R.H.2    Lazowska, E.D.3
  • 3
    • 84874684489 scopus 로고    scopus 로고
    • Special online collection: Dealing with data
    • Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www.sciencemag.org/site/special/data/, 2011
    • (2011)
  • 4
    • 84873103791 scopus 로고    scopus 로고
    • Challenges and opportunities with big data - A community white paper developed by leading researchers across the United States
    • 2012-10-02
    • Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data-A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra.org/ccc/docs/init/bigdata whitepaper.pdf
    • Agrawal, D.1    Bernstein, P.2    Bertino, E.3
  • 5
    • 81055138684 scopus 로고    scopus 로고
    • Big data: The next frontier for innovation, competition, and productivity
    • 2012-10-02
    • Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [2012-10-02]. http://www.mckinsey.com/Insights/MGI/Research/Technology_and_ Innovation/Big_data_The_next_frontier_for_innovation
    • Manyika, J.1    Chui, M.2    Brown, B.3
  • 6
    • 84874699039 scopus 로고    scopus 로고
    • Big data, big impact: New possibilities for international development
    • World Economic Forum. 2012-10-02
    • World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012-10-02]. http://www3.weforum.org/docs/WEF_TC_MFS_BigDataBigImpact_ Briefing_2012.pdf
  • 7
    • 84874723265 scopus 로고    scopus 로고
    • Big data across the federal government
    • 2012-10-02
    • Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www.whitehouse.gov/sites/default/files/microsites/ostp/ big_data_fact_sheet_final_1.pdf
  • 8
    • 84874717083 scopus 로고    scopus 로고
    • Big data for development: Challenges & opportunities
    • 2012-10-02
    • UN Global Pulse. Big Data for Development: Challenges & Opportunities [R/OL]. [2012-10-02]. http://www.unglobalpulse.org/projects/BigDataforDevelopment
  • 9
    • 84863741148 scopus 로고    scopus 로고
    • The age of big data
    • 2012-10-02
    • Times N Y. The age of big data [EB/OL]. [2012-10-02]. http://www.nytimes.com/2012/02/12/sunday-review/ big-datas-impact-in-the-world.html?pagewanted=all
    • Times, N.Y.1
  • 10
    • 84874717545 scopus 로고    scopus 로고
    • Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society
    • 2012-10-02
    • Grobelnik M. Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society [R/OL]. [2012-10-02]. http://videolectures.net/eswc2012_grobelnik_big_data/
    • Grobelnik, M.1
  • 12
    • 84874735156 scopus 로고    scopus 로고
    • What is big data
    • 2012-10-02
    • IBM. What is big data? [EB/OL]. [2012-10-02]. http://www-01.ibm.com/software/data/bigdata/
  • 13
    • 84889071369 scopus 로고    scopus 로고
    • Big data
    • 2012-10-02
    • Big data [EB/OL]. [2012-10-02]. http://en.wikipedia.org/wiki/Big_data
  • 14
    • 77953207828 scopus 로고    scopus 로고
    • The fourth paradigm: Data-intensive scientific discovery
    • Microsoft Research, Redmond, Washington
    • Hey T, Tansley S, Tolle K. The Fourth Paradigm: Data-intensive Scientific Discovery [M/OL]. Microsoft Research, Redmond, Washington (2009) http://research.microsoft.com/en-us/collaboration/fourthparadigm/
    • (2009)
    • Hey, T.1    Tansley, S.2    Tolle, K.3
  • 15
    • 59849122652 scopus 로고    scopus 로고
    • Computational social science
    • Lazer D, et al. Computational social science [J]. Science. 2009, 323: 721-723
    • (2009) Science , vol.323 , pp. 721-723
    • Lazer, D.1
  • 16
    • 33846658194 scopus 로고    scopus 로고
    • A twenty-first century science
    • Watts D J. A twenty-first century science [J]. Nature, 2007, 445(7127): 489
    • (2007) Nature , vol.445 , Issue.7127 , pp. 489
    • Watts, D.J.1
  • 17
    • 78751497089 scopus 로고    scopus 로고
    • Data, data, everywhere - A special report on managing information
    • The Economist. 2012-10-02
    • The Economist. Data, data, everywhere-A special report on managing information [EB/OL]. [2012-10-02]. http://www.economist.com/node/15557443
  • 18
    • 84874720497 scopus 로고    scopus 로고
    • Two computational paradigm for big data
    • 2012-10-02. KDD summer school
    • Kumar R. Two computational paradigm for big data [EB/OL]. [2012-10-02]. KDD summer school, 2012. http://kdd2012.sigkdd.org/sites/images/summerschool/Ravi-Kumar.pdf
    • (2012)
    • Kumar, R.1
  • 19
    • 84874670050 scopus 로고    scopus 로고
    • The big data management challenge
    • InformationWeek Report. 2012-10-02
    • InformationWeek Report. The big data management challenge [R/OL]. [2012-10-02]. http://reports.information week.com/abstract/81/8766/business-intelligence-and-information- management/research-the-big-data-management-challenge.html
  • 20
    • 84874723410 scopus 로고    scopus 로고
    • Storm
    • 2012-10-02
    • Storm [EB/OL]. [2012-10-02]. https://github.com/nathanmarz/storm
  • 21
    • 79951736167 scopus 로고    scopus 로고
    • S4: Distributed stream computing platform
    • Piscataway, NJ: IEEE
    • Neumeyer L, Robbins B, Nair A, et al. S4: Distributed Stream Computing Platform [C]//Proc of ICDM Workshops 2010. Piscataway, NJ: IEEE, 2010: 170-177
    • (2010) Proc of ICDM Workshops 2010 , pp. 170-177
    • Neumeyer, L.1    Robbins, B.2    Nair, A.3
  • 22
    • 84866885656 scopus 로고    scopus 로고
    • Building LinkedIn's real-time activity data pipeline
    • Goodhope K, Koshy J, Kreps J, et al. Building LinkedIn's Real-time Activity Data Pipeline [J]. Data Engineering, 2012, 35(2): 33-45
    • (2012) Data Engineering , vol.35 , Issue.2 , pp. 33-45
    • Goodhope, K.1    Koshy, J.2    Kreps, J.3
  • 23
    • 85030321143 scopus 로고    scopus 로고
    • MapReduce: Simplified data processing on large clusters
    • Berkeley, CA: USENIX Association
    • Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters [C]//Proc of OSDI 2004. Berkeley, CA: USENIX Association, 2004: 137-150
    • (2004) Proc of OSDI 2004 , pp. 137-150
    • Dean, J.1    Ghemawat, S.2
  • 24
    • 84874724626 scopus 로고    scopus 로고
    • Data Infrastructure at LinkedIn
    • Das S. Data Infrastructure at LinkedIn [C/OL]//Proc of the 5th Extremely Large Databases Conf. http://www-conf.slac.stanford.edu/xldb2011/talks/ xldb2011_tue_1005_LinkedIn.pdf. 2011
    • (2011) Proc of the 5th Extremely Large Databases Conf
    • Das, S.1
  • 25
    • 84874712847 scopus 로고    scopus 로고
    • ScholarSpace
    • 2012-10-02
    • ScholarSpace [EB/OL]. [2012-10-02]. http://www.cdblp.cn/
  • 26
    • 84874717514 scopus 로고    scopus 로고
    • Integrating extremely large data is extremely challenging
    • Haas L. Integrating Extremely Large Data is Extremely Challenging [C/OL]//Proc of XLDB Asia 2012. http://idke.ruc.edu.cn/xldb/www.xldb-asia.org/program.html
    • Proc of XLDB Asia 2012
    • Haas, L.1
  • 27
    • 84856522832 scopus 로고    scopus 로고
    • Mining of massive datasets
    • 2012-10-02
    • Rajaraman A, Jeff Ullman. Mining of Massive Datasets [M/OL]. [2012-10-02]. http://i.stanford.edu/ullman/mmds.html.
    • Rajaraman, A.1    Ullman, J.2
  • 29
    • 84874723339 scopus 로고    scopus 로고
    • Hadoop
    • 2012-10-02
    • Hadoop [EB/OL]. [2012-10-02]. http://hadoop.apache.org/index.html
  • 31
    • 77649259907 scopus 로고    scopus 로고
    • GFS: Evolution on fast-forward
    • McKusick K, Quinlan S. GFS: Evolution on fast-forward [J]. Communication of ACM, 2010, 53(3): 42-49
    • (2010) Communication of ACM , vol.53 , Issue.3 , pp. 42-49
    • McKusick, K.1    Quinlan, S.2
  • 32
    • 84860560293 scopus 로고    scopus 로고
    • SCOPE: Easy and efficient parallel processing of massive data sets
    • Chaiken R, Jenkins B, Larson P-Å, et al. SCOPE: Easy and efficient parallel processing of massive data sets [J]. PVLDB, 2008, 1(2): 1265-1276
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1265-1276
    • Chaiken, R.1    Jenkins, B.2    Larson, P.-Å.3
  • 33
    • 84860687282 scopus 로고    scopus 로고
    • HDFS architecture guide
    • 2012-10-02
    • HDFS Architecture Guide [EB/OL]. [2012-10-02]. http://hadoop.apache.org/docs/hdfs/r0.22.0/hdfs_design.html
  • 34
    • 84874707639 scopus 로고    scopus 로고
    • CloudStore
    • 2012-10-02
    • CloudStore [EB/OL]. [2012-10-02]. http://code.google.com/p/kosmosfs/
  • 35
    • 85076926134 scopus 로고    scopus 로고
    • Finding a needle in haystack: Facebook's photo storage
    • Berkeley, CA: USENIX Association
    • Beaver D, Kumar S, Li H C, et al. Finding a Needle in Haystack: Facebook's Photo Storage [C]//Proc of OSDI 2010. Berkeley, CA: USENIX Association, 2010: 47-60
    • (2010) Proc of OSDI 2010 , pp. 47-60
    • Beaver, D.1    Kumar, S.2    Li, H.C.3
  • 36
    • 84874752895 scopus 로고    scopus 로고
    • TFS
    • 2012-10-02
    • TFS [EB/OL]. [2012-10-02]. http://code.taobao.org/p/tfs/wiki/index/
  • 37
    • 84874674917 scopus 로고    scopus 로고
    • FastDFS
    • 2012-10-02
    • FastDFS [EB/OL]. [2012-10-02]. http://code.google.com/p/fastdfs/w/list
  • 38
    • 56049089306 scopus 로고    scopus 로고
    • Towards robust distributed systems (Invited Talk)
    • New York: ACM
    • Brewer E A. Towards robust distributed systems (Invited Talk) [C]//Proc of PODC 2000. New York: ACM, 2000
    • (2000) Proc of PODC 2000
    • Brewer, E.A.1
  • 39
    • 85071319367 scopus 로고    scopus 로고
    • Bigtable: A distributed storage system for structured data
    • Berkeley, CA: USENIX Association
    • Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data [C]//Proc of OSDI 2006. Berkeley, CA: USENIX Association, 2006: 205-218
    • (2006) Proc of OSDI 2006 , pp. 205-218
    • Chang, F.1    Dean, J.2    Ghemawat, S.3
  • 40
    • 70450064414 scopus 로고    scopus 로고
    • Dynamo: Amazon's highly available key-value store
    • New York: ACM
    • DeCandia G, Hastorun D, Jampani M, et al. Dynamo: Amazon's highly available key-value store [C]//Proc of SOSP 2007. New York: ACM, 2007: 205-220
    • (2007) Proc of SOSP 2007 , pp. 205-220
    • DeCandia, G.1    Hastorun, D.2    Jampani, M.3
  • 41
    • 84867112010 scopus 로고    scopus 로고
    • PNUTS: Yahoo!'s hosted data serving platform
    • Cooper B F, Ramakrishnan R, Srivastava U, et al. PNUTS: Yahoo!'s hosted data serving platform [J]. PVLDB, 2008, 1(2): 1277-1288
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1277-1288
    • Cooper, B.F.1    Ramakrishnan, R.2    Srivastava, U.3
  • 42
    • 80054066748 scopus 로고    scopus 로고
    • NOSQL databases
    • 2012-10-02
    • NOSQL Databases [EB/OL]. [2012-10-02]. http://nosql-database.org/
  • 43
    • 80054066748 scopus 로고    scopus 로고
    • NoSQL databases
    • 2012-10-02
    • Strauch C. NoSQL Databases [EB/OL]. [2012-10-02]. http://www.christof-strauch.de/nosqldbs.pdf
    • Strauch, C.1
  • 44
    • 79955085235 scopus 로고    scopus 로고
    • Megastore: Providing scalable, highly available storage for interactive services
    • Baker J, Bond C, Corbett J, et al. Megastore: Providing Scalable, Highly Available Storage for Interactive Services [C]//Proc of CIDR. 2011: 223-234
    • (2011) Proc of CIDR , pp. 223-234
    • Baker, J.1    Bond, C.2    Corbett, J.3
  • 45
    • 85065170765 scopus 로고    scopus 로고
    • Spanner: Google's globally-distributed database
    • Berkeley, CA: USENIX Association, 2012-10-10
    • Corbett J C, Dean J, Epstein M, et al. Spanner: Google's globally-distributed database [C/OL]//Proc of OSDI 2012. Berkeley, CA: USENIX Association, 2012. [2012-10-10]. http://static.googleusercontent.com/external_content/untrusted_ dlcp/research.google.com/zh-CN//archive/spanner-osdi2012.pdf
    • (2012) Proc of OSDI 2012
    • Corbett, J.C.1    Dean, J.2    Epstein, M.3
  • 46
    • 84874686498 scopus 로고    scopus 로고
    • F1: The fault-tolerant distributed RDBMS supporting google's ad business
    • New York: ACM
    • Shute J, Oancea M, Ellner S, et al. F1: The fault-tolerant distributed RDBMS supporting google's ad business [C]//Proc of SIGMOD 2012. New York: ACM, 2012: 777-778
    • (2012) Proc of SIGMOD 2012 , pp. 777-778
    • Shute, J.1    Oancea, M.2    Ellner, S.3
  • 47
    • 80052184829 scopus 로고    scopus 로고
    • Large-scale incremental processing using distributed transactions and notifications
    • Berkeley, CA: USENIX Association
    • Peng D, Dabek F. Large-scale incremental processing using distributed transactions and notifications [C]//Proc of OSDI 2010. Berkeley, CA: USENIX Association, 2010: 1-15
    • (2010) Proc of OSDI 2010 , pp. 1-15
    • Peng, D.1    Dabek, F.2
  • 48
    • 84874696497 scopus 로고    scopus 로고
    • Help test some next-generation infrastructure
    • 2012-10-02
    • Iyer S C, Utts M. Help test some next-generation infrastructure [EB/OL]. [2012-10-02]. http://googleweb mastercentral.blogspot.com/2009/08/help-test-some-next-generation. html, 2009
    • (2009)
    • Iyer, S.C.1    Utts, M.2
  • 49
    • 84874674551 scopus 로고    scopus 로고
    • KDD summer school
    • 2012-10-02
    • Wang Haixun. KDD summer school, 2012. Managing and Mining Billion-Node Graphs [EB/OL]. [2012-10-02]. http://kdd2012.sigkdd.org/sites/images/summerschool/Haixun-Wang.pdf
    • (2012) Managing and Mining Billion-Node Graphs
    • Wang, H.1
  • 50
    • 84874675334 scopus 로고    scopus 로고
    • ITHbase
    • 2012-10-02
    • ITHbase. [EB/OL]. [2012-10-02]. https://github.com/hbase-trx/hbase-transactional-tableindexed
  • 51
    • 84874701254 scopus 로고    scopus 로고
    • IHbase
    • 2012-10-02
    • IHbase. [EB/OL]. [2012-10-02]. http://github.com/ykulbak/ihbase
  • 52
    • 78149245479 scopus 로고    scopus 로고
    • CCIndex: A complemental clustering index on distributed ordered tables for multi-dimensional range queries
    • Berlin: Springer
    • Zou Yongqiang, Liu Jia, Wang Shicai, et al. CCIndex: A complemental clustering index on distributed ordered tables for multi-dimensional range queries [C]//Proc of NPC 2010. Berlin: Springer, 2010: 247-261
    • (2010) Proc of NPC 2010 , pp. 247-261
    • Zou, Y.1    Liu, J.2    Wang, S.3
  • 53
    • 70849107603 scopus 로고    scopus 로고
    • Asynchronous view maintenance for VLSD databases
    • New York: ACM
    • Agrawal P, Silberstein A, Cooper B F, et al. Asynchronous view maintenance for VLSD databases [C]//Proc of SIGMOD 2009. New York: ACM, 2009: 179-192
    • (2009) Proc of SIGMOD 2009 , pp. 179-192
    • Agrawal, P.1    Silberstein, A.2    Cooper, B.F.3
  • 54
    • 77954746347 scopus 로고    scopus 로고
    • Indexing multi-dimensional data in a cloud system
    • New York: ACM
    • Wang Jinbao, Wu Sai, Gao Hong, et al. Indexing multi-dimensional data in a cloud system [C]//Proc of SIGMOD 2010. New York: ACM, 2010: 591-602
    • (2010) Proc of SIGMOD 2010 , pp. 591-602
    • Wang, J.1    Wu, S.2    Gao, H.3
  • 55
    • 80052728165 scopus 로고    scopus 로고
    • An efficient quad-tree based index structure for cloud data management
    • Berlin: Springer
    • Ding Linlin, Qiao Baiyou, Wang Guoren, et al. An efficient quad-tree based index structure for cloud data management [C]//Proc of WAIM 2011. Berlin: Springer, 2011: 238-250
    • (2011) Proc of WAIM 2011 , pp. 238-250
    • Ding, L.1    Qiao, B.2    Wang, G.3
  • 56
    • 74049128689 scopus 로고    scopus 로고
    • An efficient multi-dimensional index for cloud data management
    • New York: ACM
    • Zhang Xiangyu, Ai Jing, Wang Zhongyuan, et al. An efficient multi-dimensional index for cloud data management [C]//Proc of CloudDB 2009. New York: ACM, 2009: 17-24
    • (2009) Proc of CloudDB 2009 , pp. 17-24
    • Zhang, X.1    Ai, J.2    Wang, Z.3
  • 57
    • 84857170381 scopus 로고    scopus 로고
    • A-Tree: Distributed indexing of multidimensional data for cloud computing environments
    • Piscataway, NJ: IEEE
    • Papadopoulos A, Katsaros D. A-Tree: Distributed indexing of multidimensional data for cloud computing environments [C]//Proc of CloudCom 2011. Piscataway, NJ: IEEE, 2011: 407-414
    • (2011) Proc of CloudCom 2011 , pp. 407-414
    • Papadopoulos, A.1    Katsaros, D.2
  • 58
    • 82055165170 scopus 로고    scopus 로고
    • MD-HBase: A scalable multi-dimensional data infrastructure for location aware services
    • Piscataway, NJ: IEEE
    • Nishimura S, Das S, Agrawal D, et al. MD-HBase: A scalable multi-dimensional data infrastructure for location aware services [C]//Proc of MDM 2011. Piscataway, NJ: IEEE, 2011: 7-16
    • (2011) Proc of MDM 2011 , pp. 7-16
    • Nishimura, S.1    Das, S.2    Agrawal, D.3
  • 59
    • 84874717206 scopus 로고    scopus 로고
    • An efficient index for massive IOT data in cloud environment
    • New York: ACM
    • Ma Youzhong, Rao Jia, Hu Weisong, et al. An efficient index for massive IOT data in cloud environment [C]//Proc of CIKM 2012. New York: ACM, 2012
    • (2012) Proc of CIKM 2012
    • Ma, Y.1    Rao, J.2    Hu, W.3
  • 60
    • 77954723629 scopus 로고    scopus 로고
    • Pregel: A system for large-scale graph processing
    • New York: ACM
    • Malewicz G, Austern M H, Bik A J C, et al. Pregel: A system for large-scale graph processing [C]//Proc of SIGMOD 2010. New York: ACM, 2010: 135-146
    • (2010) Proc of SIGMOD 2010 , pp. 135-146
    • Malewicz, G.1    Austern, M.H.2    Bik, A.J.C.3
  • 61
    • 0025467711 scopus 로고
    • Valiant: A bridging model for parallel computation
    • Leslie G. Valiant: A bridging model for parallel computation [J]. Communication of ACM, 1990, 33(8): 103-111
    • (1990) Communication of ACM , vol.33 , Issue.8 , pp. 103-111
    • Leslie, G.1
  • 62
    • 79958258284 scopus 로고    scopus 로고
    • Dremel: Interactive analysis of web-scale datasets
    • Melnik S, Gubarev A, Long Jingjing, et al. Dremel: Interactive analysis of web-scale datasets [J]. PVLDB, 2010, 3(1): 330-339
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 330-339
    • Melnik, S.1    Gubarev, A.2    Long, J.3
  • 63
    • 84874753184 scopus 로고    scopus 로고
    • Google BigQuery
    • 2012-10-02
    • Google BigQuery. [EB/OL]. [2012-10-02]. https://cloud.google.com/products/big-query.html
  • 64
    • 84873173544 scopus 로고    scopus 로고
    • Processing a trillion cells per mouse click
    • Hall A, Bachmann O, Büssow R, et al. Processing a trillion cells per mouse click [J]. PVLDB, 2012, 5(11): 1436-1446
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1436-1446
    • Hall, A.1    Bachmann, O.2    Büssow, R.3
  • 65
    • 34548041192 scopus 로고    scopus 로고
    • Dryad: Distributed data-parallel programs from sequential building blocks
    • New York: ACM
    • Isard M, Budiu M, Yu Yuan, et al. Dryad: Distributed data-parallel programs from sequential building blocks [C]//Proc of EuroSys 2007. New York: ACM, 2007: 59-72
    • (2007) Proc of EuroSys 2007 , pp. 59-72
    • Isard, M.1    Budiu, M.2    Yu, Y.3
  • 66
    • 84874720916 scopus 로고    scopus 로고
    • Cascading
    • 2012-10-02
    • Cascading. [EB/OL]. [2012-10-02]. http://www.cascading.org/
  • 68
    • 77954948422 scopus 로고    scopus 로고
    • Nephele/PACTs: A programming model and execution framework for web-scale analytical processing
    • New York: ACM
    • Battré D, Ewen S, Hueske F, et al. Nephele/PACTs: A programming model and execution framework for web-scale analytical processing [C]//Proc of SoCC 2010. New York: ACM, 2010: 119-130
    • (2010) Proc of SoCC 2010 , pp. 119-130
    • Battré, D.1    Ewen, S.2    Hueske, F.3
  • 69
    • 85076910718 scopus 로고    scopus 로고
    • Nectar: Automatic management of data and computation in datacenters
    • Berkeley, CA: USENIX Association
    • Gunda P K, Ravindranath L, Thekkath C A, et al. Nectar: Automatic management of data and computation in datacenters [C]//Proc of OSDI 2010. Berkeley, CA: USENIX Association, 2010: 75-88
    • (2010) Proc of OSDI 2010 , pp. 75-88
    • Gunda, P.K.1    Ravindranath, L.2    Thekkath, C.A.3
  • 70
    • 79958103442 scopus 로고    scopus 로고
    • DryadInc: Reusing work in large-scale computations
    • Berkeley, CA: USENIX Association
    • Popa L, Budiu M, et al. DryadInc: Reusing work in large-scale computations [C]//Proc of HotCloud 2009. Berkeley, CA: USENIX Association, 2009
    • (2009) Proc of HotCloud 2009
    • Popa, L.1    Budiu, M.2
  • 71
    • 82155187187 scopus 로고    scopus 로고
    • Incoop: MapReduce for incremental computations
    • New York: ACM
    • Bhatotia P, Wieder A, Rodrigues R, et al. Incoop: MapReduce for incremental computations [C]//Proc of SOCC 2011. New York: ACM, 2011
    • (2011) Proc of SOCC 2011
    • Bhatotia, P.1    Wieder, A.2    Rodrigues, R.3
  • 72
    • 84866771648 scopus 로고    scopus 로고
    • IncMR: Incremental data processing based on MapReduce
    • Piscataway, NJ: IEEE
    • Yan Cairong, Yang Xin, Yu Ze, et al. IncMR: Incremental data processing based on MapReduce [C]//Proc of Cloud 2012. Piscataway, NJ: IEEE, 2012: 534-541
    • (2012) Proc of Cloud 2012 , pp. 534-541
    • Yan, C.1    Yang, X.2    Yu, Z.3
  • 73
    • 79959962180 scopus 로고    scopus 로고
    • Nova: Continuous Pig/Hadoop workflows
    • New York: ACM
    • Olston C, Chiou G, Chitnis L, et al. Nova: Continuous Pig/Hadoop workflows [C]//SIGMOD 2011. New York: ACM, 2011: 1081-1090
    • (2011) SIGMOD 2011 , pp. 1081-1090
    • Olston, C.1    Chiou, G.2    Chitnis, L.3
  • 74
    • 85076771850 scopus 로고    scopus 로고
    • MapReduce online
    • Berkeley, CA: USENIX Association
    • Condie T, Conway N, Alvaro P, et al. MapReduce Online [C]//Proc of NSDI 2010. Berkeley, CA: USENIX Association, 2010: 313-328
    • (2010) Proc of NSDI 2010 , pp. 313-328
    • Condie, T.1    Conway, N.2    Alvaro, P.3
  • 75
    • 84874740397 scopus 로고    scopus 로고
    • You can stop early with COLA: Online processing of aggregate queries in the cloud
    • New York: ACM
    • Shi Yingjie, Meng Xiaofeng, Wang Fusheng, et al. You can stop early with COLA: Online processing of aggregate queries in the cloud [C]//Proc of CIKM 2012. New York: ACM, 2012
    • (2012) Proc of CIKM 2012
    • Shi, Y.1    Meng, X.2    Wang, F.3
  • 76
    • 85077087194 scopus 로고    scopus 로고
    • In-situ mapreduce for log processing
    • Berkeley, CA: USENIX Association
    • Logothetis D, Trezzo C, Webb K, et al. In-situ mapreduce for log processing [C]//Proc of USENIX ATC 2011. Berkeley, CA: USENIX Association, 2011
    • (2011) Proc of USENIX ATC 2011
    • Logothetis, D.1    Trezzo, C.2    Webb, K.3
  • 77
    • 84866773457 scopus 로고    scopus 로고
    • Continuous mapreduce: An architecture for large-scale in-situ data processing
    • USA: University of California, San Diego
    • Trezzo C J. Continuous mapreduce: An architecture for large-scale in-situ data processing [D]. USA: University of California, San Diego, 2010. http://christrezzo.com/ctrezzo-thesis.pdf
    • (2010)
    • Trezzo, C.J.1
  • 78
    • 79956351190 scopus 로고    scopus 로고
    • HaLoop: Efficient iterative data processing on large clusters
    • Bu Yingyi, Howe B, Balazinska M, et al. HaLoop: Efficient iterative data processing on large clusters [J]. PVLDB, 2010, 3(1): 285-296
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 285-296
    • Bu, Y.1    Howe, B.2    Balazinska, M.3
  • 79
    • 78650003594 scopus 로고    scopus 로고
    • Twister: A runtime for iterative MapReduce
    • New York: ACM
    • Ekanayake J, Li Hui, Zhang Bingjing, et al. Twister: A runtime for iterative MapReduce [C]//Proc of HPDC 2010. New York: ACM, 2010: 810-818
    • (2010) Proc of HPDC 2010 , pp. 810-818
    • Ekanayake, J.1    Li, H.2    Zhang, B.3
  • 80
    • 83455229790 scopus 로고    scopus 로고
    • iMapReduce: A distributed computing framework for iterative computation
    • Piscataway, NJ: IEEE
    • Zhang Y, Gao Q, Gao L, et al. iMapReduce: A distributed computing framework for iterative computation [C]//Proc of IPDPS 2011 DataCloud Workshop. Piscataway, NJ: IEEE, 2011: 1112-1121
    • (2011) Proc of IPDPS 2011 DataCloud Workshop , pp. 1112-1121
    • Zhang, Y.1    Gao, Q.2    Gao, L.3
  • 81
    • 84857174691 scopus 로고    scopus 로고
    • iHadoop: Asynchronous iterations for mapreduce
    • Piscataway, NJ: IEEE
    • Elnikety E, Elsayed E, Ramadan H E. iHadoop: Asynchronous iterations for mapreduce [C]//Proc of CloudCom 2011. Piscataway, NJ: IEEE, 2011: 81-90
    • (2011) Proc of CloudCom 2011 , pp. 81-90
    • Elnikety, E.1    Elsayed, E.2    Ramadan, H.E.3
  • 82
    • 82155168650 scopus 로고    scopus 로고
    • PrIter: A distributed framework for prioritized iterative computation
    • New York: ACM
    • Zhang Yanfeng, Gao Qixin, Gao Lixin, et al. PrIter: A distributed framework for prioritized iterative computations [C]//Proc of SoCC 2011. New York: ACM, 2011: 1-14
    • (2011) Proc of SoCC 2011 , pp. 1-14
    • Zhang, Y.1    Gao, Q.2    Gao, L.3
  • 83
    • 85085251984 scopus 로고    scopus 로고
    • Spark: Cluster computing with working sets
    • Berkeley, CA: USENIX Association
    • Zaharia M, Chowdhury M, Franklin M, et al. Spark: Cluster computing with working sets [C]//Proc of HotCloud 2010. Berkeley, CA: USENIX Association, 2010
    • (2010) Proc of HotCloud 2010
    • Zaharia, M.1    Chowdhury, M.2    Franklin, M.3
  • 84
    • 79960018131 scopus 로고    scopus 로고
    • Apache hadoop goes realtime at Facebook
    • New York: ACM
    • Borthakur D, Gray J, Sarma J S, et al. Apache hadoop goes realtime at Facebook [C]//Proc of SIGMOD 2011. New York: ACM, 2011: 1071-1080
    • (2011) Proc of SIGMOD 2011 , pp. 1071-1080
    • Borthakur, D.1    Gray, J.2    Sarma, J.S.3
  • 85
    • 83455229796 scopus 로고    scopus 로고
    • Towards scalable one-pass analytics using MapReduce
    • Piscataway, NJ: IEEE
    • Mazur E, Li Boduo, Diao Yanlei, et al. Towards scalable one-pass analytics using MapReduce [C]//Proc of IPDPS Workshops 2011. Piscataway, NJ: IEEE, 2011: 1102-1111
    • (2011) Proc of IPDPS Workshops 2011 , pp. 1102-1111
    • Mazur, E.1    Li, B.2    Diao, Y.3
  • 86
    • 79959939881 scopus 로고    scopus 로고
    • A platform for scalable one-pass analytics using MapReduce
    • New York: ACM
    • Li Boduo, Mazur E, Diao Yanlei, et al. A platform for scalable one-pass analytics using MapReduce [C]//Proc of SIGMOD 2011. New York: ACM, 2011: 985-996
    • (2011) Proc of SIGMOD 2011 , pp. 985-996
    • Li, B.1    Mazur, E.2    Diao, Y.3
  • 87
    • 77952270709 scopus 로고    scopus 로고
    • DEDUCE: At the intersection of MapReduce and stream processing
    • New York: ACM
    • Kumar V, Andrade H, Gedik B, et al. DEDUCE: At the intersection of MapReduce and stream processing [C]//Proc of EDBT 2010. New York: ACM, 2010: 657-662
    • (2010) Proc of EDBT 2010 , pp. 657-662
    • Kumar, V.1    Andrade, H.2    Gedik, B.3
  • 89
    • 84864197919 scopus 로고    scopus 로고
    • M3: Stream processing on main-memory MapReduce
    • Piscataway, NJ: IEEE
    • Aly A M, SallamA, Gnanasekaran B M, et al. M3: Stream processing on main-memory MapReduce [C]//Proc of ICDE 2012. Piscataway, NJ: IEEE, 2012: 1253-1256
    • (2012) Proc of ICDE 2012 , pp. 1253-1256
    • Aly, A.M.1    Sallam, A.2    Gnanasekaran, B.M.3
  • 90
    • 84857167165 scopus 로고    scopus 로고
    • Scalable and low-latency data processing with stream MapReduce
    • Piscataway, NJ: IEEE
    • Brito A, Martin A, Knauth T, et al. Scalable and low-latency data processing with stream MapReduce [C]//Proc of CloudCom 2011. Piscataway, NJ: IEEE, 2011: 48-58
    • (2011) Proc of CloudCom 2011 , pp. 48-58
    • Brito, A.1    Martin, A.2    Knauth, T.3
  • 91
    • 84872409772 scopus 로고    scopus 로고
    • Muppet: MapReduce-style processing of fast data
    • Wang Lam, Liu Lu, Prasad S, et al. Muppet: MapReduce-style processing of fast data [J]. PVLDB, 2012, 5(12): 1814-1825
    • (2012) PVLDB , vol.5 , Issue.12 , pp. 1814-1825
    • Wang, L.1    Liu, L.2    Prasad, S.3
  • 92
    • 79952397765 scopus 로고    scopus 로고
    • SSS: An implementation of key-value store based MapReduce framework
    • Piscataway, NJ: IEEE
    • Ogawa H, Nakada H, Takano R, et al. SSS: An implementation of key-value store based MapReduce framework [C]//Proc of CloudCom 2010. Piscataway, NJ: IEEE, 2010: 754-761
    • (2010) Proc of CloudCom 2010 , pp. 754-761
    • Ogawa, H.1    Nakada, H.2    Takano, R.3
  • 93
    • 84962598306 scopus 로고    scopus 로고
    • Discretized streams: An efficient and fault-tolerant model for stream processing on large clusters
    • Berkeley, CA: USENIX Association
    • Zaharia M, Das T, Li H, et al. Discretized streams: An efficient and fault-tolerant model for stream processing on large clusters [C]//Proc of HotCloud 2012. Berkeley, CA: USENIX Association, 2012
    • (2012) Proc of HotCloud 2012
    • Zaharia, M.1    Das, T.2    Li, H.3
  • 94
    • 72049096376 scopus 로고    scopus 로고
    • HPMR: Prefetching and pre-shuffling in shared MapReduce computation environment
    • Piscataway, NJ: IEEE
    • Seo S, Jang I, Woo K, et al. HPMR: Prefetching and pre-shuffling in shared MapReduce computation environment [C]//Proc of CLUSTER 2009. Piscataway, NJ: IEEE, 2009: 1-8
    • (2009) Proc of CLUSTER 2009 , pp. 1-8
    • Seo, S.1    Jang, I.2    Woo, K.3
  • 95
    • 80053521271 scopus 로고    scopus 로고
    • Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing)
    • Dittrich J, Quiané-Ruiz J-A, Jindal A, et al. Hadoop++: Making a yellow elephant run like a cheetah (without it even noticing) [J]. PVLDB, 2010, 3(1): 518-529
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 518-529
    • Dittrich, J.1    Quiané-Ruiz, J.-A.2    Jindal, A.3
  • 96
    • 77954942463 scopus 로고    scopus 로고
    • Towards automatic optimization of MapReduce programs
    • New York: ACM
    • Babu S. Towards automatic optimization of MapReduce programs [C]//Proc of SoCC 2010. New York: ACM, 2010: 137-142
    • (2010) Proc of SoCC 2010 , pp. 137-142
    • Babu, S.1
  • 97
    • 77952577122 scopus 로고    scopus 로고
    • The Hadoop distributed filesystem: Balancing portability and performance
    • Piscataway, NJ: IEEE
    • Shafer J, Rixner S, Cox A L. The Hadoop distributed filesystem: Balancing portability and performance [C]//Proc of ISPASS 2010. Piscataway, NJ: IEEE, 2010: 122-1
    • (2010) Proc of ISPASS 2010 , pp. 122-1
    • Shafer, J.1    Rixner, S.2    Cox, A.L.3
  • 98
    • 84873205384 scopus 로고    scopus 로고
    • Efficient processing of k nearest neighbor joins using MapReduce
    • Lu Wei, Shen Yanyan, Chen Su, et al: Efficient processing of k nearest neighbor joins using MapReduce [J]. PVLDB, 2012, 5(10): 1016-1027
    • (2012) PVLDB , vol.5 , Issue.10 , pp. 1016-1027
    • Lu, W.1    Shen, Y.2    Chen, S.3
  • 99
    • 84873185478 scopus 로고    scopus 로고
    • Efficient multi-way theta-join processing using MapReduce
    • Zhang Xiaofei, Chen Lei, Wang Min. Efficient multi-way theta-join processing using MapReduce [J]. PVLDB, 2012, 5(11): 1184-1195
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1184-1195
    • Zhang, X.1    Chen, L.2    Wang, M.3
  • 100
    • 84863769684 scopus 로고    scopus 로고
    • Online aggregation for large MapReduce jobs
    • Pansare N, Borkar V R, Jermaine C, et al. Online aggregation for large MapReduce jobs [J]. PVLDB, 2011, 4(11): 1135-1145
    • (2011) PVLDB , vol.4 , Issue.11 , pp. 1135-1145
    • Pansare, N.1    Borkar, V.R.2    Jermaine, C.3
  • 101
    • 84862666441 scopus 로고    scopus 로고
    • Exploiting MapReduce-based similarity joins
    • New York: ACM
    • Silva Y N, Reed J M. Exploiting MapReduce-based similarity joins [C]//Proc of SIGMOD 2012. New York: ACM, 2012: 693-696
    • (2012) Proc of SIGMOD 2012 , pp. 693-696
    • Silva, Y.N.1    Reed, J.M.2
  • 102
    • 79960020260 scopus 로고    scopus 로고
    • Processing theta-joins using MapReduce
    • New York: ACM
    • Okcan I, Riedewald M. Processing theta-joins using MapReduce [C]//Proc of SIGMOD 2011. New York: ACM, 2011: 949-960
    • (2011) Proc of SIGMOD 2011 , pp. 949-960
    • Okcan, I.1    Riedewald, M.2
  • 103
    • 84864262965 scopus 로고    scopus 로고
    • Fuzzy joins using MapReduce
    • Piscataway, NJ: IEEE
    • Afrati F N, Das S A, Menestrina D, et al. Fuzzy joins using MapReduce [C]//Proc of ICDE 2012. Piscataway, NJ: IEEE, 2012: 498-509
    • (2012) Proc of ICDE 2012 , pp. 498-509
    • Afrati, F.N.1    Das, S.A.2    Menestrina, D.3
  • 104
    • 84866636304 scopus 로고    scopus 로고
    • Distributed high-dimensional index creation using Hadoop, HDFS and C++
    • Piscataway, NJ: IEEE
    • Gudmundsson G b, Amsaleg L, Jónsson B b. Distributed high-dimensional index creation using Hadoop, HDFS and C++ [C]//Proc of CBMI 2012. Piscataway, NJ: IEEE, 2012: 1-6
    • (2012) Proc of CBMI 2012 , pp. 1-6
    • Gudmundsson, G.B.1    Amsaleg, L.2    Jónsson, B.B.3
  • 105
    • 77958138729 scopus 로고    scopus 로고
    • Multi-dimensional index on Hadoop distributed file system
    • Piscataway, NJ: IEEE
    • Liao Haojun, Han Jizhong, Fang Jinyun. Multi-dimensional index on Hadoop distributed file system [C]//Proc of NAS. Piscataway, NJ: IEEE, 2010: 240-249
    • (2010) Proc of NAS , pp. 240-249
    • Liao, H.1    Han, J.2    Fang, J.3
  • 106
    • 77952775707 scopus 로고    scopus 로고
    • Hive - A petabyte scale data warehouse using Hadoop
    • Piscataway, NJ: IEEE
    • Thusoo A, Sarma J S, Jain N, et al. Hive-A petabyte scale data warehouse using Hadoop [C]//Proc of ICDE 2010. Piscataway, NJ: IEEE, 2010: 996-1005
    • (2010) Proc of ICDE 2010 , pp. 996-1005
    • Thusoo, A.1    Sarma, J.S.2    Jain, N.3
  • 107
    • 77954734823 scopus 로고    scopus 로고
    • HadoopDB in action: Building real world applications
    • New York: ACM
    • Abouzied A, Bajda-Pawlikowski K, Huang Jiewen, et al. HadoopDB in action: Building real world applications [C]//Proc of SIGMOD 2010. New York: ACM, 2010: 1111-1114
    • (2010) Proc of SIGMOD 2010 , pp. 1111-1114
    • Abouzied, A.1    Bajda-Pawlikowski, K.2    Huang, J.3
  • 108
    • 79957812355 scopus 로고    scopus 로고
    • Cheetah: A high performance, custom data warehouse on top of MapReduce
    • Chen Songting. Cheetah: A high performance, custom data warehouse on top of MapReduce [J]. PVLDB, 2010, 3(2): 1459-1468
    • (2010) PVLDB , vol.3 , Issue.2 , pp. 1459-1468
    • Chen, S.1
  • 109
    • 84862705604 scopus 로고    scopus 로고
    • Oracle in-database hadoop: When mapreduce meets RDBMS
    • New York: ACM
    • Su Xueyuan, Swart G. Oracle in-database hadoop: When mapreduce meets RDBMS [C]//Proc of SIGMOD 2012. New York: ACM, 2012: 779-790
    • (2012) Proc of SIGMOD 2012 , pp. 779-790
    • Su, X.1    Swart, G.2
  • 110
    • 79959959335 scopus 로고    scopus 로고
    • Emerging trends in the enterprise data analytics: Connecting Hadoop and DB2 warehouse
    • New York: ACM
    • Özcan F, Hoa D, Beyer K S, et al. Emerging trends in the enterprise data analytics: Connecting Hadoop and DB2 warehouse [C]//Proc of SIGMOD 2011. New York: ACM, 2011: 1161-1164
    • (2011) Proc of SIGMOD 2011 , pp. 1161-1164
    • Özcan, F.1    Hoa, D.2    Beyer, K.S.3
  • 111
    • 77954696367 scopus 로고    scopus 로고
    • Integrating hadoop and parallel DBMs
    • New York: ACM
    • Xu Yu, Kostamaa P, Gao Like. Integrating hadoop and parallel DBMs [C]//Proc of SIGMOD 2010. New York: ACM, 2010: 969-974
    • (2010) Proc of SIGMOD 2010 , pp. 969-974
    • Xu, Y.1    Kostamaa, P.2    Gao, L.3
  • 112
    • 84875106113 scopus 로고    scopus 로고
    • Parallel implementation of ant-based clustering algorithm based on Hadoop
    • Berlin: Springer
    • Yang Yan, Ni Xianhua, Wang Hongjun, et al. Parallel implementation of ant-based clustering algorithm based on Hadoop [C]//Proc of ICSI 2012. Berlin: Springer, 2012: 190-197
    • (2012) Proc of ICSI 2012 , pp. 190-197
    • Yang, Y.1    Ni, X.2    Wang, H.3
  • 113
    • 84863028097 scopus 로고    scopus 로고
    • DH-TRIE frequent pattern mining on Hadoop using JPA
    • Piscataway, NJ: IEEE
    • Yang Lai, Shi Zhongzhi, Xu L D, et al. DH-TRIE frequent pattern mining on Hadoop using JPA [C]//Proc of GrC 2011. Piscataway, NJ: IEEE, 2011: 875-878
    • (2011) Proc of GrC 2011 , pp. 875-878
    • Yang, L.1    Shi, Z.2    Xu, L.D.3
  • 114
    • 79958732591 scopus 로고    scopus 로고
    • Clustering with Apache Hadoop
    • New York: ACM
    • Nair S, Mehta J. Clustering with Apache Hadoop [C]//Proc of ICWET 2011. New York: ACM, 2011: 505-509
    • (2011) Proc of ICWET 2011 , pp. 505-509
    • Nair, S.1    Mehta, J.2
  • 115
    • 78249280628 scopus 로고    scopus 로고
    • An efficient data mining framework on Hadoop using Java persistence API
    • Piscataway, NJ: IEEE
    • Yang Lai, Shi Zhongzhi. An efficient data mining framework on Hadoop using Java persistence API [C]//Proc of CIT 2010. Piscataway, NJ: IEEE, 2010: 203-209
    • (2010) Proc of CIT 2010 , pp. 203-209
    • Yang, L.1    Shi, Z.2
  • 116
    • 84874754008 scopus 로고    scopus 로고
    • Development of a distributed recommender system using the Hadoop framework
    • Chiky R, Ghisloti R, Kazi-Aoul Z. Development of a distributed recommender system using the Hadoop framework [C]//Proc of EGC. 2012: 495-500
    • (2012) Proc of EGC , pp. 495-500
    • Chiky, R.1    Ghisloti, R.2    Kazi-Aoul, Z.3
  • 117
    • 80053404328 scopus 로고    scopus 로고
    • Scaling-up item-based collaborative filtering recommendation algorithm based on Hadoop
    • Piscataway, NJ: IEEE
    • Jiang Jing, Lu Jie, Zhang Guangquan, et al. Scaling-up item-based collaborative filtering recommendation algorithm based on Hadoop [C]//Proc of SERVICES 2011. Piscataway, NJ: IEEE, 2011: 490-497
    • (2011) Proc of SERVICES 2011 , pp. 490-497
    • Jiang, J.1    Lu, J.2    Zhang, G.3
  • 118
    • 80052580755 scopus 로고    scopus 로고
    • Content-based recommendation algorithms on the Hadoop MapReduce framework
    • New York: ACM
    • De Pessemier T, Vanhecke K, Dooms S, et al. Content-based recommendation algorithms on the Hadoop MapReduce framework [C]//Proc of WEBIST 2011. New York: ACM, 2011: 237-240
    • (2011) Proc of WEBIST 2011 , pp. 237-240
    • de Pessemier, T.1    Vanhecke, K.2    Dooms, S.3
  • 119
    • 84866022995 scopus 로고    scopus 로고
    • Bid optimizing and inventory scoring in targeted online advertising
    • New York: ACM
    • Perlich C, Dalessandro B, Hook R, et al. Bid optimizing and inventory scoring in targeted online advertising [C]//Proc of KDD 2012. New York: ACM, 2012: 804-812
    • (2012) Proc of KDD 2012 , pp. 804-812
    • Perlich, C.1    Dalessandro, B.2    Hook, R.3
  • 120
    • 0041783510 scopus 로고    scopus 로고
    • Privacy preserving data mining
    • New York: ACM
    • Agrawal R, Srikant R. Privacy preserving data mining [C]//Proc of SIGMOD 2000. New York: ACM, 2000: 439-450
    • (2000) Proc of SIGMOD 2000 , pp. 439-450
    • Agrawal, R.1    Srikant, R.2
  • 121
    • 33746335051 scopus 로고    scopus 로고
    • Differential privacy
    • Berlin: Springer
    • Dwork C. Differential privacy [C]//Proc of ICALP 2006. Berlin: Springer, 2006: 1-12
    • (2006) Proc of ICALP 2006 , pp. 1-12
    • Dwork, C.1
  • 122
    • 80053488797 scopus 로고    scopus 로고
    • Energy efficiency is not enough, energy proportionality is needed!
    • Berlin: Springer
    • Härder T, Hudlet V, Ou Y, et al. Energy efficiency is not enough, energy proportionality is needed! [C]//Proc of DASFAA 2011. Berlin: Springer, 2011: 226-239
    • (2011) Proc of DASFAA 2011 , pp. 226-239
    • Härder, T.1    Hudlet, V.2    Ou, Y.3
  • 123
    • 84874546725 scopus 로고    scopus 로고
    • Power, pollution and the internet
    • 2012-10-02
    • Times N Y. Power, Pollution and the Internet [EB/OL]. [2012-10-02]. http://www.nytimes.com/2012/09/23/technology/data-centers-waste- vast-amounts-of-energy-belying-industry-image.html?pagewanted=all
    • Times, N.Y.1
  • 124
    • 85084015462 scopus 로고    scopus 로고
    • Green databases through integration of renewable energy
    • 2012-10-02
    • Chen Cheng, He Bingsheng, Tang Xueyan, et al. Green databases through integration of renewable energy [C/OL].//Proc of CIDR 2013. [2012-10-02]. http://www.cidrdb.org/2013
    • (2013) Proc of CIDR
    • Chen, C.1    He, B.2    Tang, X.3
  • 125
    • 35448992171 scopus 로고    scopus 로고
    • Design of flash-based DBMS: An in-page logging approach
    • New York: ACM
    • Lee S-W, Moon B. Design of flash-based DBMS: An in-page logging approach [C]//Proc of SIGMOD 2007. New York: ACM, 2007: 55-66
    • (2007) Proc of SIGMOD 2007 , pp. 55-66
    • Lee, S.-W.1    Moon, B.2
  • 126
    • 85077053697 scopus 로고    scopus 로고
    • Extending SSD lifetimes with disk-based write caches
    • Berkeley, CA: USENIX Association
    • Soundararajan G, Prabhakaran V, Balakrishnan M, et al. Extending SSD lifetimes with disk-based write caches [C]//Proc of FAST 2010, Berkeley, CA: USENIX Association, 2010
    • (2010) Proc of FAST 2010
    • Soundararajan, G.1    Prabhakaran, V.2    Balakrishnan, M.3
  • 127
    • 84874754907 scopus 로고    scopus 로고
    • Hybrid storage with disk based write cache
    • Berlin: Springer
    • Yang Puyuan, Jin Peiquan, Yue Lihua. Hybrid storage with disk based write cache [C]//Proc of FlashDB 2011. Berlin: Springer, 2011: 190-201
    • (2011) Proc of FlashDB 2011 , pp. 190-201
    • Yang, P.1    Jin, P.2    Yue, L.3
  • 128
    • 70449694274 scopus 로고    scopus 로고
    • Flashing up the storage layer
    • Koltsidas I, Viglas S D. Flashing up the storage layer [J]. PVLDB, 2008, 1(1): 514-525
    • (2008) PVLDB , vol.1 , Issue.1 , pp. 514-525
    • Koltsidas, I.1    Viglas, S.D.2
  • 129
    • 79955891474 scopus 로고    scopus 로고
    • I-CASH: Intelligently coupled array of SSD and HDD
    • Piscataway, NJ: IEEE
    • Yang Qing, Ren Jin. I-CASH: Intelligently coupled array of SSD and HDD [C]//Proc of HPCA 2011. Piscataway, NJ: IEEE, 2011: 278-289
    • (2011) Proc of HPCA 2011 , pp. 278-289
    • Yang, Q.1    Ren, J.2
  • 130
    • 79959590856 scopus 로고    scopus 로고
    • Hystor: Making the best use of solid state drives in high performance storage systems
    • New York: ACM
    • Chen Feng, Koufaty D A, Zhang Xiaodong. Hystor: Making the best use of solid state drives in high performance storage systems [C]//Proc of ICS 2011. New York: ACM, 2011: 22-32
    • (2011) Proc of ICS 2011 , pp. 22-32
    • Chen, F.1    Koufaty, D.A.2    Zhang, X.3
  • 131
    • 80051886445 scopus 로고    scopus 로고
    • Combo drive: Optimizing cost and performance in a heterogeneous storage device
    • New York: ACM
    • Payer H, Sanvido M A, Bandic Z Z, et al. Combo drive: Optimizing cost and performance in a heterogeneous storage device [C]//Proc of WISH 2009. New York: ACM, 2009
    • (2009) Proc of WISH 2009
    • Payer, H.1    Sanvido, M.A.2    Bandic, Z.Z.3
  • 132
    • 84863769347 scopus 로고    scopus 로고
    • Towards cost-effective storage provisioning for DBMSs
    • Zhang Ning, Tatemura Junichi, Patel J M, et al. Towards cost-effective storage provisioning for DBMSs [J]. PVLDB, 2011, 5(4): 274-285
    • (2011) PVLDB , vol.5 , Issue.4 , pp. 274-285
    • Zhang, N.1    Junichi, T.2    Patel, J.M.3
  • 133
    • 79959940559 scopus 로고    scopus 로고
    • SSD bufferpool extensions for database systems
    • Canim M, Mihaila G A, Bhattacharjee B, et al. SSD bufferpool extensions for database systems [J].PVLDB, 2010, 3(1/2): 1435-1446
    • (2010) PVLDB , vol.3 , Issue.1-3 , pp. 1435-1446
    • Canim, M.1    Mihaila, G.A.2    Bhattacharjee, B.3
  • 134
    • 79959978267 scopus 로고    scopus 로고
    • Turbocharging DBMS buffer pool using SSDs
    • New York: ACM
    • Do Jaeyoung, Zhang Donghui, Patel Jignesh M, et al. Turbocharging DBMS buffer pool using SSDs [C]//Proc of SIGMOD 2011. New York: ACM, 1113-1124
    • (2011) Proc of SIGMOD , pp. 1113-1124
    • Do, J.1    Zhang, D.2    Patel, J.M.3
  • 135
    • 84974575965 scopus 로고    scopus 로고
    • Improving database performance using a flash-based write cache
    • Berlin: Springer
    • Ou Y, Härder T. Improving database performance using a flash-based write cache [C]//Proc of Proc of FlashDB 2011. Berlin: Springer, 2012: 2-13
    • (2012) Proc of Proc of FlashDB 2011 , pp. 2-13
    • Ou, Y.1    Härder, T.2
  • 136
    • 84873192273 scopus 로고    scopus 로고
    • hStorage-DB: Heterogeneity-aware data management to exploit the full capability of hybrid storage systems
    • Luo T, Lee R, Mesnier M, et al. hStorage-DB: Heterogeneity-aware data management to exploit the full capability of hybrid storage systems [J]. PVLDB, 2012, 5(10): 1076-1087
    • (2012) PVLDB , vol.5 , Issue.10 , pp. 1076-1087
    • Luo, T.1    Lee, R.2    Mesnier, M.3
  • 137
    • 84873163834 scopus 로고    scopus 로고
    • Flash-based extended cache for higher throughput and faster recovery
    • Kang W-H, Lee S-W, Moon B. Flash-based extended cache for higher throughput and faster recovery [J]. PVLDB, 2012, 5(11): 1615-1626
    • (2012) PVLDB , vol.5 , Issue.11 , pp. 1615-1626
    • Kang, W.-H.1    Lee, S.-W.2    Moon, B.3
  • 139
    • 77954942463 scopus 로고    scopus 로고
    • Towards automatic optimization of MapReduce programs
    • New York: ACM
    • Babu S. Towards automatic optimization of MapReduce programs [C]//Proc of SoCC 2010. New York: ACM, 2010: 137-142
    • (2010) Proc of SoCC 2010 , pp. 137-142
    • Babu, S.1
  • 140
    • 84863535860 scopus 로고    scopus 로고
    • Automatic optimization for MapReduce programs
    • Jahani E, Cafarella M J, Ré C. Automatic optimization for MapReduce programs [J]. PVLDB, 2011, 4(6): 385-396
    • (2011) PVLDB , vol.4 , Issue.6 , pp. 385-396
    • Jahani, E.1    Cafarella, M.J.2    Ré, C.3
  • 141
    • 79961048828 scopus 로고    scopus 로고
    • Manimal: Relational optimization for data-intensive programs
    • New York: ACM
    • Cafarella M J, Ré C. Manimal: Relational optimization for data-intensive programs [C]//Proc of WebDB 2010. New York: ACM, 2010
    • (2010) Proc of WebDB 2010
    • Cafarella, M.J.1    Ré, C.2
  • 142
    • 80053500227 scopus 로고    scopus 로고
    • Starfish: A self-tuning system for big data analytics
    • Herodotou H, Lim H, Luo G, et al. Starfish: A self-tuning system for big data analytics [C]//Proc of CIDR. 2011: 261-272
    • (2011) Proc of CIDR , pp. 261-272
    • Herodotou, H.1    Lim, H.2    Luo, G.3
  • 144
    • 55349148888 scopus 로고    scopus 로고
    • Pig Latin: A not-so-foreign language for data processing
    • New York: ACM
    • Olston C, Reed B, Srivastava U, et al. Pig Latin: A not-so-foreign language for data processing [C]//Proc of SIGMOD 2008. New York: ACM, 2008: 1099-1110
    • (2008) Proc of SIGMOD 2008 , pp. 1099-1110
    • Olston, C.1    Reed, B.2    Srivastava, U.3
  • 145
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: Parallel analysis with Sawzall
    • Pike R, Dorward S, Griesemer R, et al. Interpreting the data: Parallel analysis with Sawzall [J]. Scientific Programming, 2005, 13(4): 277-298
    • (2005) Scientific Programming , vol.13 , Issue.4 , pp. 277-298
    • Pike, R.1    Dorward, S.2    Griesemer, R.3
  • 146
    • 70849091519 scopus 로고    scopus 로고
    • Distributed data-parallel computing using a high-level programming language
    • New York: ACM
    • Isard M, Yu Y. Distributed data-parallel computing using a high-level programming language [C]//Proc of SIGMOD 2009. New York: ACM, 2009: 987-994
    • (2009) Proc of SIGMOD 2009 , pp. 987-994
    • Isard, M.1    Yu, Y.2
  • 147
    • 84874720674 scopus 로고    scopus 로고
    • XML query optimization in MapReduce
    • New York: ACM
    • Fegaras L, Li C, Gupta U, et al. XML query optimization in MapReduce [C]//Proc of WebDB 2011. New York: ACM, 2011
    • (2011) Proc of WebDB 2011
    • Fegaras, L.1    Li, C.2    Gupta, U.3
  • 148
    • 77954585266 scopus 로고    scopus 로고
    • HadoopToSQL: A MapReduce query optimizer
    • New York: ACM
    • Iu M-Y, Zwaenepoel W. HadoopToSQL: A MapReduce query optimizer [C]//Proc of EuroSys 2010. New York: ACM, 2010: 251-264
    • (2010) Proc of EuroSys 2010 , pp. 251-264
    • Iu, M.-Y.1    Zwaenepoel, W.2
  • 149
    • 84863507276 scopus 로고    scopus 로고
    • An optimization framework for map-reduce queries
    • New York: ACM
    • Fegaras L, Li C, Gupta U. An optimization framework for map-reduce queries [C]//Proc of EDBT 2012. New York: ACM, 2012: 26-37
    • (2012) Proc of EDBT 2012 , pp. 26-37
    • Fegaras, L.1    Li, C.2    Gupta, U.3
  • 150
    • 77954920597 scopus 로고    scopus 로고
    • Comet: Batched stream processing for data intensive distributed computing
    • New York: ACM
    • He Bingsheng, Yang Mao, Guo Zhenyu, et al. Comet: Batched stream processing for data intensive distributed computing [C]//Proc of SoCC 2010. New York: ACM, 2010: 63-74
    • (2010) Proc of SoCC 2010 , pp. 63-74
    • He, B.1    Yang, M.2    Guo, Z.3
  • 151
    • 80051874596 scopus 로고    scopus 로고
    • YSmart: Yet another SQL-to-MapReduce translator
    • Piscataway, NJ: IEEE
    • Lee R, Luo Tian, Huai Yin, et al. YSmart: Yet another SQL-to-MapReduce translator. [C]//Proc of ICDCS 2011. Piscataway, NJ: IEEE, 2011: 25-36
    • (2011) Proc of ICDCS 2011 , pp. 25-36
    • Lee, R.1    Luo, T.2    Huai, Y.3
  • 152
    • 84862684677 scopus 로고    scopus 로고
    • Tenzing a SQL implementation on the MapReduce framework
    • Chattopadhyay B, Lin Liang, Liu Weiran, et al. Tenzing a SQL implementation on the MapReduce framework [J]. PVLDB, 2011, 4(12): 1318-1327
    • (2011) PVLDB , vol.4 , Issue.12 , pp. 1318-1327
    • Chattopadhyay, B.1    Lin, L.2    Liu, W.3
  • 153
    • 84874673967 scopus 로고    scopus 로고
    • S4Latin: Language-based big data streaming
    • UK: University of Edinburgh, 2012-10-02
    • Stoellberger P. S4Latin: Language-based big data streaming [D/OL]. UK: University of Edinburgh, 2011. [2012-10-02]. http://analytical-labs.com/downloads/msc_BigDataStreams.pdf
    • (2011)
    • Stoellberger, P.1
  • 154
    • 77954732118 scopus 로고    scopus 로고
    • ParaTimer: A progress indicator for MapReduce DAGs
    • New York: ACM
    • Morton K, Balazinska M, Grossman D. ParaTimer: A progress indicator for MapReduce DAGs [C]//Proc of SIGMOD 2010. New York: ACM, 2010: 507-518
    • (2010) Proc of SIGMOD 2010 , pp. 507-518
    • Morton, K.1    Balazinska, M.2    Grossman, D.3
  • 155
    • 77952748724 scopus 로고    scopus 로고
    • KAMD: Estimating the progress of MapReduce pipelines
    • Piscataway, NJ: IEEE
    • Morton K, Friesen A, Balazinska M, et al. KAMD: Estimating the progress of MapReduce pipelines [C]//Proc of ICDE 2010. Piscataway, NJ: IEEE, 2010: 681-684
    • (2010) Proc of ICDE 2010 , pp. 681-684
    • Morton, K.1    Friesen, A.2    Balazinska, M.3
  • 156
    • 78650028829 scopus 로고    scopus 로고
    • MR-scope: A real-time tracing tool for MapReduce
    • New York: ACM
    • Huang Dachuan, Shi Xuanhua, Ibrahim Shadi, et al. MR-scope: A real-time tracing tool for MapReduce [C]//Proc of HPDC 2010. New York: ACM, 2010: 849-855
    • (2010) Proc of HPDC 2010 , pp. 849-855
    • Huang, D.1    Shi, X.2    Shadi, I.3
  • 157
    • 77955941295 scopus 로고    scopus 로고
    • Visual, log-based causal tracing for performance debugging of MapReduce systems
    • Piscataway, NJ: IEEE
    • Tan Jiaqi, Kavulya S, Gandhi R, et al. Visual, log-based causal tracing for performance debugging of MapReduce systems [C]//Proc of ICDCS 2010. Piscataway, NJ: IEEE, 2010: 795-806
    • (2010) Proc of ICDCS 2010 , pp. 795-806
    • Tan, J.1    Kavulya, S.2    Gandhi, R.3
  • 158
    • 84863739408 scopus 로고    scopus 로고
    • PerfXplain: Debugging MapReduce job performance
    • Khoussainova N, Balazinska M, Suciu D. PerfXplain: Debugging MapReduce job performance [J]. PVLDB, 2012, 5(7): 598-609
    • (2012) PVLDB , vol.5 , Issue.7 , pp. 598-609
    • Khoussainova, N.1    Balazinska, M.2    Suciu, D.3
  • 159
    • 85077087102 scopus 로고    scopus 로고
    • HiTune: Dataflow-based performance analysis for big data cloud
    • Berkeley, CA: USENIX Association
    • Dai Jinquan, Huang Jie, Huang Shengsheng, et al. HiTune: Dataflow-based performance analysis for big data cloud [C]//Proc of USENIX ATC 2011. Berkeley, CA: USENIX Association, 2011
    • (2011) Proc of USENIX ATC 2011
    • Dai, J.1    Huang, J.2    Huang, S.3
  • 160
    • 84883167861 scopus 로고    scopus 로고
    • Introducting the big data benchmarking community
    • 2012-10-02
    • Baru C, Bhandarkar M, Nambiar R, et al. Introducting the big data benchmarking community [EB/OL]//Proc of XLDB 2012. [2012-10-02]. http://www-conf.slac.stanford.edu/xldb2012/talks/xldb2012_tue_ LT07_Baru_etal.pdf
    • (2012) Proc of XLDB
    • Baru, C.1    Bhandarkar, M.2    Nambiar, R.3
  • 161
    • 84874738808 scopus 로고    scopus 로고
    • We don't know enough to make a big data benchmark suite - An academia-industry view
    • Berkeley: EECS Department, University of California
    • Chen Y. We don't know enough to make a big data benchmark suite-An academia-industry view [R/OL]. Berkeley: EECS Department, University of California, http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-71.pdf
    • Chen, Y.1
  • 162
    • 80053019024 scopus 로고    scopus 로고
    • The case for evaluating MapReduce performance using workload suites
    • Piscataway, NJ: IEEE
    • Chen Yanpei, Ganapathi A, Griffith R, et al. The case for evaluating MapReduce performance using workload suites [C]//Proc of MASCOTS 2011. Piscataway, NJ: IEEE, 2011: 390-399
    • (2011) Proc of MASCOTS 2011 , pp. 390-399
    • Chen, Y.1    Ganapathi, A.2    Griffith, R.3
  • 163
    • 84874336016 scopus 로고    scopus 로고
    • MRBS: A comprehensive MapReduce benchmark suite
    • LIG Laboratory, University of Grenoble. 2012-10-02
    • Sangroya A, Serrano D, Bouchenak S. MRBS: A comprehensive MapReduce benchmark suite [R/OL]. LIG Laboratory, University of Grenoble. [2012-10-02]. http://rr.liglab.fr/research_report/RR-LIG-024_orig.pdf
    • Sangroya, A.1    Serrano, D.2    Bouchenak, S.3
  • 164
    • 84874740976 scopus 로고    scopus 로고
    • GridMix
    • 2012-10-02
    • GridMix. [EB/OL]. [2012-10-02]. http://hadoop.apache.org/docs/mapreduce/current/gridmix.html
  • 165
    • 84874697832 scopus 로고    scopus 로고
    • TPC-DS
    • 2012-10-02
    • TPC-DS. [EB/OL]. [2012-10-02]. http://www.tpc.org/tpcds/
  • 166
    • 84883286603 scopus 로고    scopus 로고
    • YCSB++: Benchmarking and performance debugging advanced features in scalable table stores
    • New York: ACM
    • Patil S, Polte M, Ren K, et al. YCSB++: Benchmarking and performance debugging advanced features in scalable table stores [C]//Proc of SoCC 2011. New York: ACM, 2011
    • (2011) Proc of SoCC 2011
    • Patil, S.1    Polte, M.2    Ren, K.3
  • 167
    • 84873134968 scopus 로고    scopus 로고
    • Interactive query processing in big data systems: A cross-industry study of MapReduce workloads
    • Chen Y, Alspaugh S, Katz R. Interactive query processing in big data systems: A cross-industry study of MapReduce workloads [J]. PVLDB, 2012, 5(12): 1802-1813
    • (2012) PVLDB , vol.5 , Issue.12 , pp. 1802-1813
    • Chen, Y.1    Alspaugh, S.2    Katz, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.