메뉴 건너뛰기




Volumn 165, Issue , 2015, Pages 293-306

Managing a big data project: The case of Ramco cements limited

Author keywords

Big Data analytics; Cement industry; Data driven decision making; Manufacturing; Outbound logistics; Visualization

Indexed keywords

ADVANCED ANALYTICS; BIG DATA; CEMENT INDUSTRY; CEMENTS; DATA ANALYTICS; DATA VISUALIZATION; FLOW VISUALIZATION; HUMAN RESOURCE MANAGEMENT; MANUFACTURE; VISUALIZATION;

EID: 84929507264     PISSN: 09255273     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijpe.2014.12.032     Document Type: Article
Times cited : (202)

References (49)
  • 1
    • 84884210911 scopus 로고    scopus 로고
    • What's buzzing in the blizzard of buzz? Automotive component isolation in social media postings
    • A.S. Abrams, J. Jiao, W. Fan, G.A. Wang, and Z. Zhang What's buzzing in the blizzard of buzz? Automotive component isolation in social media postings Decis. Support Syst. 55 4 2013 871 882
    • (2013) Decis. Support Syst. , vol.55 , Issue.4 , pp. 871-882
    • Abrams, A.S.1    Jiao, J.2    Fan, W.3    Wang, G.A.4    Zhang, Z.5
  • 3
    • 41849137940 scopus 로고    scopus 로고
    • Management support with structured and unstructured data - an integrated business intelligence framework
    • H. Baars, and H.G. Kemper Management support with structured and unstructured data - an integrated business intelligence framework Inf. Syst. Manag. 25 2 2008 132 148
    • (2008) Inf. Syst. Manag. , vol.25 , Issue.2 , pp. 132-148
    • Baars, H.1    Kemper, H.G.2
  • 4
    • 55249084997 scopus 로고
    • The case study research strategy in studies of information systems
    • I. Benbasat, D.K. Goldstrein, and M. Mead The case study research strategy in studies of information systems MIS Q. 11 3 1987 369 385
    • (1987) MIS Q. , vol.11 , Issue.3 , pp. 369-385
    • Benbasat, I.1    Goldstrein, D.K.2    Mead, M.3
  • 5
    • 84888182750 scopus 로고    scopus 로고
    • Big data: what's your plan? (Available online)
    • accessed 10.01.14
    • S. Biesdorf, D. Court, and P. Willmott Big data: what's your plan? (Available online) McKinsey Q. 2013 (accessed 10.01.14)
    • (2013) McKinsey Q.
    • Biesdorf, S.1    Court, D.2    Willmott, P.3
  • 6
    • 85022221589 scopus 로고    scopus 로고
    • What businesses can learn from big data and high performance analytics in the manufacturing industry (Available online)
    • Big Data Insight Group What businesses can learn from big data and high performance analytics in the manufacturing industry (Available online) Appl. Insight Ser. 2012 1 22
    • (2012) Appl. Insight Ser. , pp. 1-22
  • 7
    • 84857148573 scopus 로고    scopus 로고
    • The meaningful use of big data: four perspectives - four challenges
    • C. Bizer, P. Boncz, M.L. Brodie, and O. Erling The meaningful use of big data: four perspectives - four challenges SIGMOD Record 40 4 2011 56 60
    • (2011) SIGMOD Record , vol.40 , Issue.4 , pp. 56-60
    • Bizer, C.1    Boncz, P.2    Brodie, M.L.3    Erling, O.4
  • 8
    • 43049156334 scopus 로고    scopus 로고
    • ERP and SCM systems integration: the case of a valve manufacturer in China
    • I. Bose, R. Pal, and A. Ye ERP and SCM systems integration: the case of a valve manufacturer in China Inf. Manag. 45 4 2008 233 241
    • (2008) Inf. Manag. , vol.45 , Issue.4 , pp. 233-241
    • Bose, I.1    Pal, R.2    Ye, A.3
  • 9
    • 84883446228 scopus 로고    scopus 로고
    • A robustness information and visualization model for time and space assembly line balancing under uncertain demand
    • M. Chica, Ó. Cordóna, S. Damas, and J. Bautista A robustness information and visualization model for time and space assembly line balancing under uncertain demand Int. J. Prod. Econ. 145 2 2013 761 772
    • (2013) Int. J. Prod. Econ. , vol.145 , Issue.2 , pp. 761-772
    • Chica, M.1    Cordóna, Ó.2    Damas, S.3    Bautista, J.4
  • 11
    • 30344473967 scopus 로고    scopus 로고
    • Competing on analytics
    • T. Davenport Competing on analytics Harv. Bus. Rev. 84 1 2006 1 10
    • (2006) Harv. Bus. Rev. , vol.84 , Issue.1 , pp. 1-10
    • Davenport, T.1
  • 12
    • 9744258804 scopus 로고    scopus 로고
    • Rigor in information systems positivist case research: current practices, trends, and recommendations
    • L. Dubé, and G. Paré Rigor in information systems positivist case research: current practices, trends, and recommendations MIS Q. 27 4 2003 597 636
    • (2003) MIS Q. , vol.27 , Issue.4 , pp. 597-636
    • Dubé, L.1    Paré, G.2
  • 13
    • 85053337675 scopus 로고    scopus 로고
    • Are manufacturing companies ready to go digital?
    • accessed 10.01.14
    • Ebner, G., Bechtold, J., 2012. Are manufacturing companies ready to go digital? Capgemini Consulting White Paper. Available online: (accessed 10.01.14.).
    • (2012) Capgemini Consulting White Paper
    • Ebner, G.1    Bechtold, J.2
  • 14
    • 84929502081 scopus 로고    scopus 로고
    • The big deal about a big data culture (and innovation)
    • R.B. Ferguson The big deal about a big data culture (and innovation) MIT Sloan Manag. Rev. 2012 1 4
    • (2012) MIT Sloan Manag. Rev. , pp. 1-4
    • Ferguson, R.B.1
  • 15
    • 84878117597 scopus 로고    scopus 로고
    • Quality control and due diligence in project management: getting decisions right by taking the outside view
    • B. Flyvbjerg Quality control and due diligence in project management: getting decisions right by taking the outside view Int. J. Proj. Manag. 31 5 2013 760 774
    • (2013) Int. J. Proj. Manag. , vol.31 , Issue.5 , pp. 760-774
    • Flyvbjerg, B.1
  • 17
    • 84929514426 scopus 로고    scopus 로고
    • Merck optimizes manufacturing with big data analytics
    • accessed 31.05.14
    • Henschen, D., 2014. Merck optimizes manufacturing with big data analytics. Information Week. Available online: (accessed 31.05.14.).
    • (2014) Information Week
    • Henschen, D.1
  • 18
    • 33846922481 scopus 로고    scopus 로고
    • Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing
    • S. Hsu, and C. Chien Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing Int. J. Prod. Econ. 107 1 2007 88 103
    • (2007) Int. J. Prod. Econ. , vol.107 , Issue.1 , pp. 88-103
    • Hsu, S.1    Chien, C.2
  • 19
    • 69149090568 scopus 로고    scopus 로고
    • The pathologies of big data
    • A. Jacobs The pathologies of big data Commun. ACM 52 8 2009 36 44
    • (2009) Commun. ACM , vol.52 , Issue.8 , pp. 36-44
    • Jacobs, A.1
  • 20
    • 84888304817 scopus 로고    scopus 로고
    • Review-based measurement of customer satisfaction in mobile service: sentiment analysis and VIKOR approach
    • D. Kang, and Y. Park Review-based measurement of customer satisfaction in mobile service: sentiment analysis and VIKOR approach Expert Syst. Appl. 41 4 2014 1041 1050
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1041-1050
    • Kang, D.1    Park, Y.2
  • 21
    • 84929514110 scopus 로고    scopus 로고
    • Organizational alignment is key to big data success
    • D. Kiron Organizational alignment is key to big data success MIT Sloan Manag. Rev. 54 3 2013 1 6
    • (2013) MIT Sloan Manag. Rev. , vol.54 , Issue.3 , pp. 1-6
    • Kiron, D.1
  • 22
    • 84902271502 scopus 로고    scopus 로고
    • From value to vision: reimagining the possible with data analytics
    • D. Kiron, R.B. Ferguson, and P.K. Prentice From value to vision: reimagining the possible with data analytics MIT Sloan Manag. Rev. 2013 1 19
    • (2013) MIT Sloan Manag. Rev. , pp. 1-19
    • Kiron, D.1    Ferguson, R.B.2    Prentice, P.K.3
  • 24
    • 80053211695 scopus 로고    scopus 로고
    • Creating business value with analytics
    • D. Kiron, and R. Shockley Creating business value with analytics MIT Sloan Manag. Rev. 53 1 2011 57 63
    • (2011) MIT Sloan Manag. Rev. , vol.53 , Issue.1 , pp. 57-63
    • Kiron, D.1    Shockley, R.2
  • 25
    • 0042414011 scopus 로고    scopus 로고
    • Emerging trends in business analytics
    • R. Kohavi, N.J. Rothleder, and E. Simoudis Emerging trends in business analytics Commun. ACM 45 8 2002 45 48
    • (2002) Commun. ACM , vol.45 , Issue.8 , pp. 45-48
    • Kohavi, R.1    Rothleder, N.J.2    Simoudis, E.3
  • 26
    • 0012350051 scopus 로고    scopus 로고
    • IT project implementation strategies for effective changes: a critical review
    • P.R. Kuruppuarachchi, P. Mandal, and R. Smith IT project implementation strategies for effective changes: a critical review Logist. Inf. Manag. 15 2 2002 126 137
    • (2002) Logist. Inf. Manag. , vol.15 , Issue.2 , pp. 126-137
    • Kuruppuarachchi, P.R.1    Mandal, P.2    Smith, R.3
  • 28
    • 55249126057 scopus 로고
    • A scientific methodology for MIS case studies
    • A.S. Lee A scientific methodology for MIS case studies MIS Q. 13 1 1989 33 52
    • (1989) MIS Q. , vol.13 , Issue.1 , pp. 33-52
    • Lee, A.S.1
  • 29
    • 84892717180 scopus 로고    scopus 로고
    • Recent advances and trends in predictive manufacturing systems in big data environment
    • J. Lee, E. Lapira, B. Bagheri, and H. Kao Recent advances and trends in predictive manufacturing systems in big data environment Manuf. Lett. 1 1 2013 38 41
    • (2013) Manuf. Lett. , vol.1 , Issue.1 , pp. 38-41
    • Lee, J.1    Lapira, E.2    Bagheri, B.3    Kao, H.4
  • 30
    • 84889804078 scopus 로고    scopus 로고
    • Supplier replenishment policy using e-Kanban: a framework for successful implementation
    • G. MacKerron, M. Kumar, V. Kumar, and A. Esain Supplier replenishment policy using e-Kanban: a framework for successful implementation Prod. Plan. Control 25 2 2014 161 175
    • (2014) Prod. Plan. Control , vol.25 , Issue.2 , pp. 161-175
    • MacKerron, G.1    Kumar, M.2    Kumar, V.3    Esain, A.4
  • 31
    • 84860443491 scopus 로고    scopus 로고
    • From databases to big data
    • S. Madden From databases to big data IEEE Internet Comput. 16 3 2012 4 6
    • (2012) IEEE Internet Comput. , vol.16 , Issue.3 , pp. 4-6
    • Madden, S.1
  • 32
    • 0037448866 scopus 로고    scopus 로고
    • Issues in implementing ERP: a case study
    • P. Mandal, and A. Gunasekaran Issues in implementing ERP: a case study Eur. J. Oper. Res. 146 2003 274 283
    • (2003) Eur. J. Oper. Res. , vol.146 , pp. 274-283
    • Mandal, P.1    Gunasekaran, A.2
  • 33
  • 34
    • 84887085289 scopus 로고    scopus 로고
    • Analytics: the real-world use of big data
    • accessed 10.01.14
    • Miele, S., and Shockley, R., 2013. Analytics: the real-world use of big data. IBM Institute for Business Value. Available online: (accessed 10.01.14.).
    • (2013) IBM Institute for Business Value
    • Miele, S.1    Shockley, R.2
  • 35
    • 84893438004 scopus 로고    scopus 로고
    • ERP and SCM integration: the impact on measuring business performance
    • S. Mekawie, and A. Elragal ERP and SCM integration: the impact on measuring business performance Int. J. Enterp. Inf. Syst. 9 2 2013 106 124
    • (2013) Int. J. Enterp. Inf. Syst. , vol.9 , Issue.2 , pp. 106-124
    • Mekawie, S.1    Elragal, A.2
  • 36
    • 4143096884 scopus 로고    scopus 로고
    • Application of data mining techniques to healthcare data
    • M.K. Obenshain Application of data mining techniques to healthcare data Infect. Control Hosp. Epidemiol. 25 8 2004 690 695
    • (2004) Infect. Control Hosp. Epidemiol. , vol.25 , Issue.8 , pp. 690-695
    • Obenshain, M.K.1
  • 37
    • 84880170201 scopus 로고    scopus 로고
    • Artificial intelligence and big data
    • D.E. O'Leary Artificial intelligence and big data IEEE Intell. Syst. 28 2 2013 96 99
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.2 , pp. 96-99
    • O'Leary, D.E.1
  • 39
    • 0346896334 scopus 로고    scopus 로고
    • From unstructured data to actionable intelligence
    • R. Rao From unstructured data to actionable intelligence IEEE IT Prof. 5 6 2003 29 35
    • (2003) IEEE IT Prof. , vol.5 , Issue.6 , pp. 29-35
    • Rao, R.1
  • 40
    • 84929506633 scopus 로고    scopus 로고
    • Manufacturers connect the dots with big data and analytics (Available online)
    • accessed 31.05.14
    • R.L. Records, and Q.K. Fisher Manufacturers connect the dots with big data and analytics (Available online) Comput. Sci. Corp. 2014 1 6 (accessed 31.05.14)
    • (2014) Comput. Sci. Corp. , pp. 1-6
    • Records, R.L.1    Fisher, Q.K.2
  • 41
    • 0038176579 scopus 로고    scopus 로고
    • Efficacy of end-user neural network and data mining software for predicting complex system performance
    • P.F. Schikora, and M.R. Godfrey Efficacy of end-user neural network and data mining software for predicting complex system performance Int. J. Prod. Econ. 84 3 2003 231 253
    • (2003) Int. J. Prod. Econ. , vol.84 , Issue.3 , pp. 231-253
    • Schikora, P.F.1    Godfrey, M.R.2
  • 42
    • 41849135262 scopus 로고    scopus 로고
    • Integrating structured and unstructured data using text tagging and annotation
    • S. Sukumaran, and A. Sureka Integrating structured and unstructured data using text tagging and annotation Bus. Intell. J. 11 2 2006 8
    • (2006) Bus. Intell. J. , vol.11 , Issue.2 , pp. 8
    • Sukumaran, S.1    Sureka, A.2
  • 44
    • 84899916498 scopus 로고    scopus 로고
    • Mining logistics data to assure the quality in a sustainable food supply chain: a case in the red wine industry
    • S.L. Ting, Y.K. Tse, G.T.S. Ho, S.H. Chung, and G. Pang Mining logistics data to assure the quality in a sustainable food supply chain: a case in the red wine industry Int. J. Prod. Econ. 152 2014 200 209
    • (2014) Int. J. Prod. Econ. , vol.152 , pp. 200-209
    • Ting, S.L.1    Tse, Y.K.2    Ho, G.T.S.3    Chung, S.H.4    Pang, G.5
  • 45
    • 80053208893 scopus 로고    scopus 로고
    • The secrets to managing business analytics projects
    • S. Viaene, and A.V.D. Bunder The secrets to managing business analytics projects MIT Sloan Manag. Rev. 53 1 2001 65 69
    • (2001) MIT Sloan Manag. Rev. , vol.53 , Issue.1 , pp. 65-69
    • Viaene, S.1    Bunder, A.V.D.2
  • 46
    • 84900796645 scopus 로고    scopus 로고
    • Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management
    • M.A. Waller, and S.E. Fawcett Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management J. Bus. Logist. 34 2 2013 77 84
    • (2013) J. Bus. Logist. , vol.34 , Issue.2 , pp. 77-84
    • Waller, M.A.1    Fawcett, S.E.2
  • 47
    • 34748898358 scopus 로고    scopus 로고
    • The current state of business intelligence
    • H.J. Watson, and B.H. Wixom The current state of business intelligence IEEE Comput. 40 9 2007 96 99
    • (2007) IEEE Comput. , vol.40 , Issue.9 , pp. 96-99
    • Watson, H.J.1    Wixom, B.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.