메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages

ISOWN: Accurate somatic mutation identification in the absence of normal tissue controls

Author keywords

Matching normal tissue; Next generation sequencing; Somatic mutation; Variant classification

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; CANCER TISSUE; GENE FREQUENCY; GENETIC VARIATION; MUTATIONAL ANALYSIS; NEXT GENERATION SEQUENCING; PRIORITY JOURNAL; SINGLE NUCLEOTIDE POLYMORPHISM; SOMATIC MUTATION; VALIDATION STUDY; WHOLE EXOME SEQUENCING; DNA MUTATIONAL ANALYSIS; GENETICS; HIGH THROUGHPUT SEQUENCING; HUMAN; MUTATION; NEOPLASM; PROCEDURES; SUPERVISED MACHINE LEARNING;

EID: 85021325251     PISSN: None     EISSN: 1756994X     Source Type: Journal    
DOI: 10.1186/s13073-017-0446-9     Document Type: Article
Times cited : (45)

References (45)
  • 1
    • 0034614637 scopus 로고    scopus 로고
    • The hallmarks of cancer
    • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
    • (2000) Cell , vol.100 , pp. 57-70
    • Hanahan, D.1    Weinberg, R.A.2
  • 2
    • 84872853570 scopus 로고    scopus 로고
    • Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling
    • Young A, Lou D, McCormick F. Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov. 2013;3:112-23.
    • (2013) Cancer Discov , vol.3 , pp. 112-123
    • Young, A.1    Lou, D.2    McCormick, F.3
  • 10
    • 84983631327 scopus 로고    scopus 로고
    • Classification of breast cancer patients using somatic mutation profiles and machine learning approaches
    • Vural S, Wang X, Guda C. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches. BMC Syst Biol. 2016;10 Suppl 3:62.
    • (2016) BMC Syst Biol , vol.10 , pp. 62
    • Vural, S.1    Wang, X.2    Guda, C.3
  • 12
    • 84953856110 scopus 로고    scopus 로고
    • High selectivity of PI3Kβ inhibitors in SETD2-mutated renal clear cell carcinoma
    • Wang J, Wen J, Yi R, Liu F, Zhou J, Liu G, Li Q, Yang Z, Su X. High selectivity of PI3Kβ inhibitors in SETD2-mutated renal clear cell carcinoma. J BUON. 2015;20:1267-75.
    • (2015) J BUON , vol.20 , pp. 1267-1275
    • Wang, J.1    Wen, J.2    Yi, R.3    Liu, F.4    Zhou, J.5    Liu, G.6    Li, Q.7    Yang, Z.8    Su, X.9
  • 14
    • 85021317147 scopus 로고    scopus 로고
    • MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data
    • Fan Y, Xi L, Hughes DS, Zhang J, Zhang J, Futreal PA, Wheeler DA, Wang W. MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data. Genome Biol. 2016;17:178.
    • (2016) Genome Biol , vol.17 , pp. 178
    • Fan, Y.1    Xi, L.2    Hughes, D.S.3    Zhang, J.4    Zhang, J.5    Futreal, P.A.6    Wheeler, D.A.7    Wang, W.8
  • 15
  • 16
    • 84979879819 scopus 로고    scopus 로고
    • SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations
    • Liu Y, Loewer M, Aluru S, Schmidt B. SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations. BMC Syst Biol. 2016;10 Suppl 2:47.
    • (2016) BMC Syst Biol , vol.10 , pp. 47
    • Liu, Y.1    Loewer, M.2    Aluru, S.3    Schmidt, B.4
  • 23
    • 67649884743 scopus 로고    scopus 로고
    • Fast and accurate short read alignment with Burrows-Wheeler transform
    • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754-60.
    • (2009) Bioinformatics , vol.25 , pp. 1754-1760
    • Li, H.1    Durbin, R.2
  • 24
    • 77956534324 scopus 로고    scopus 로고
    • ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
    • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
    • (2010) Nucleic Acids Res , vol.38
    • Wang, K.1    Li, M.2    Hakonarson, H.3
  • 26
    • 80053189298 scopus 로고    scopus 로고
    • Predicting the functional impact of protein mutations: application to cancer genomics
    • Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res. 2011;39:e118.
    • (2011) Nucleic Acids Res , vol.39
    • Reva, B.1    Antipin, Y.2    Sander, C.3
  • 28
    • 84878799611 scopus 로고    scopus 로고
    • Predicting functional effect of human missense mutations using PolyPhen-2
    • Chapter 7:Unit7
    • Adzhubei I, Jordan DM, and Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013; Chapter 7:Unit7, 20.
    • (2013) Curr Protoc Hum Genet. , pp. 20
    • Adzhubei, I.1    Jordan, D.M.2    Sunyaev, S.R.3
  • 30
    • 18044385763 scopus 로고    scopus 로고
    • Agreement, the f-measure, and reliability in information retrieval
    • Hripcsak G, Rothschild AS. Agreement, the f-measure, and reliability in information retrieval. J Am Med Inform Assoc. 2005;12:296-8.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 296-298
    • Hripcsak, G.1    Rothschild, A.S.2
  • 33
    • 0003957032 scopus 로고    scopus 로고
    • Data mining: practical machine learning tools and techniques
    • Burlington: Morgan Kaufmann
    • Witten IH and Frank E. Data mining: practical machine learning tools and techniques. Burlington: Morgan Kaufmann; 2005.
    • (2005)
    • Witten, I.H.1    Frank, E.2
  • 35
    • 0003500248 scopus 로고
    • 4.5: Programs for machine learning
    • San Francisco, USA: Morgan Kaufmann Publishers Inc.
    • Quinlan RC. 4.5: Programs for machine learning. San Francisco, USA: Morgan Kaufmann Publishers Inc.; 1993.
    • (1993)
    • Quinlan, R.C.1
  • 36
    • 0041382385 scopus 로고    scopus 로고
    • Random Forests
    • Statistics Department, University of California. Machine learning
    • Breiman L. Random Forests. Statistics Department, University of California. Machine learning; 2001. https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf.
    • (2001)
    • Breiman, L.1
  • 37
    • 84945261048 scopus 로고    scopus 로고
    • Multiclass alternating decision trees
    • European Conference on Machine Learning, Helsinki, Finland. Springer-Verlag.
    • Holmes G, Pfahringer B, Kirkby R, Frank E, Hall M. Multiclass alternating decision trees. European Conference on Machine Learning, Helsinki, Finland. Springer-Verlag. 2002;161-72.
    • (2002) , pp. 161-172
    • Holmes, G.1    Pfahringer, B.2    Kirkby, R.3    Frank, E.4    Hall, M.5
  • 38
    • 0000468432 scopus 로고
    • Estimating continuous distributions in Bayesian classifiers
    • San Mateo: Morgan Kaufmann Publishers
    • John GH, Langley P. Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the eleventh conference on uncertainty in artificial intelligence. San Mateo: Morgan Kaufmann Publishers. 1995. p. 338-45. http://web.cs.iastate.edu/~honavar/bayes-continuous.pdf.
    • (1995) Proceedings of the eleventh conference on uncertainty in artificial intelligence , pp. 338-345
    • John, G.H.1    Langley, P.2
  • 39
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • Le Cessie S, Van Houwelingen JC. Ridge estimators in logistic regression. Appl Stat. 1992;41(1):191-201.
    • (1992) Appl Stat. , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.C.2
  • 40
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T, Tibshirani R. Classification by pairwise coupling. Ann Stat. 1998;26:451-71.
    • (1998) Ann Stat , vol.26 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 42
    • 84863922124 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of human colon and rectal cancer
    • Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330-7.
    • (2012) Nature , vol.487 , pp. 330-337
  • 44
    • 84883467378 scopus 로고    scopus 로고
    • OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes
    • Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013;29:2238-44.
    • (2013) Bioinformatics , vol.29 , pp. 2238-2244
    • Tamborero, D.1    Gonzalez-Perez, A.2    Lopez-Bigas, N.3
  • 45
    • 84962159505 scopus 로고    scopus 로고
    • Evaluation of nine somatic variant callers for detection of somatic mutations in exome and targeted deep sequencing data
    • Krøigård AB, Thomassen M, Lænkholm AV, Kruse TA, Larsen MJ. Evaluation of nine somatic variant callers for detection of somatic mutations in exome and targeted deep sequencing data. PLoS One. 2016;11:e0151664.
    • (2016) PLoS One , vol.11
    • Krøigård, A.B.1    Thomassen, M.2    Lænkholm, A.V.3    Kruse, T.A.4    Larsen, M.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.