메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages 1-33

Explaining the success of adaboost and random forests as interpolating classifiers

Author keywords

AdaBoost; Classification; Overfitting; Random forests; Tree ensembles

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FORESTRY; INTERPOLATION; OPTIMIZATION;

EID: 85021054378     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (267)

References (32)
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Leo Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifier (with discussion and a rejoinder by the author)
    • Leo Breiman. Arcing classifier (with discussion and a rejoinder by the author). The Annals of Statistics, 26(3): 801-849, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 6
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7): 1493-1517, 1999.
    • (1999) Neural computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Leo Breiman. Random forests. Machine Learning, 45: 5-32, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the l 2 loss: Regression and classification
    • Peter Buhlmann and Bin Yu. Boosting with the l 2 loss: Regression and classification. Journal of the American Statistical Association, 98(462): 324-339, 2003.
    • (2003) Journal of the American Statistical Association , vol.98 , Issue.462 , pp. 324-339
    • Buhlmann, P.1    Yu, B.2
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Discussion of additive logistic regression: A statistical view of boosting
    • Y. Freund and R.E. Shapire. Discussion of additive logistic regression: A statistical view of boosting. Annals of Statistics, 28: 337-374, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Freund, Y.1    Shapire, R.E.2
  • 13
    • 0002978642 scopus 로고    scopus 로고
    • Schapire. Experiments with a new boosting algorithm
    • Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In ICML, volume 96, pages 148-156, 1996.
    • (1996) ICML , vol.96 , pp. 148-156
    • Freund, Y.1    Robert, E.2
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Jerome Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.1
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors)
    • Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2): 337-407, 2000.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 84881447722 scopus 로고    scopus 로고
    • On the doubt about margin explanation of boosting
    • Wei Gao and Zhi-Hua Zhou. On the doubt about margin explanation of boosting. Artifficial Intelligence, 203: 1-18, 2013.
    • (2013) Artifficial Intelligence , vol.203 , pp. 1-18
    • Gao, W.1    Zhou, Z.-H.2
  • 17
    • 85021118851 scopus 로고    scopus 로고
    • Pac-learning, vc dimension and margin-based bounds
    • Carlos Guestrin. Pac-learning, vc dimension and margin-based bounds. Machine Learning, 10701: 15781, 2006.
    • (2006) Machine Learning , pp. 15781
    • Guestrin, C.1
  • 19
    • 0036116123 scopus 로고    scopus 로고
    • On weak base hypotheses and their implications for boosting regression and classification
    • Wenxin Jiang. On weak base hypotheses and their implications for boosting regression and classification. Annals of statistics, pages 51-73, 2002.
    • (2002) Annals of statistics , pp. 51-73
    • Jiang, W.1
  • 20
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R news, 2(3): 18-22, 2002.
    • (2002) R news , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 21
    • 84919773193 scopus 로고    scopus 로고
    • Do we need hundreds of classifiers to solve real world classification problems?
    • Senen Barro Manuel Fernandez-Delgado, Eva Cernadas and Dinani Amorim. Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1): 3133-3181, 2014.
    • (2014) The Journal of Machine Learning Research , vol.15 , Issue.1 , pp. 3133-3181
    • Fernandez-Delgado, S.B.M.1    Cernadas, E.2    Amorim, D.3
  • 22
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • David Mease and Abraham Wyner. Evidence contrary to the statistical view of boosting. The Journal of Machine Learning Research, 9: 131-156, 2008.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 25
    • 84879312293 scopus 로고    scopus 로고
    • Generalized boosted regression models
    • version 1-5
    • Greg Ridgeway. Generalized boosted regression models. Documentation on the R Package gbm, version 1- 5, 7, 2006.
    • (2006) Documentation on the R Package gbm , vol.7
    • Ridgeway, G.1
  • 26
    • 84931574142 scopus 로고    scopus 로고
    • Explaining adaboost
    • Springer
    • Robert E. Schapire. Explaining adaboost. In Empirical Inference, pages 37-52. Springer, 2013.
    • (2013) Empirical Inference , pp. 37-52
    • Schapire, R.E.1
  • 28
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of statistics, pages 1651-1686, 1998.
    • (1998) Annals of statistics , pp. 1651-1686
    • Schapire Yoav Freund, R.E.1    Bartlett, P.2    Lee, W.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.