메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 2315-2347

The rate of convergence of AdaBoost

Author keywords

AdaBoost; Convergence rate; Coordinate descent; Optimization

Indexed keywords

ADABOOST ALGORITHM; CONSTANT FACTORS; CONVERGENCE RATES; COORDINATE DESCENT; DATA SET; LOWER BOUNDS; PARAMETER VECTORS; RATE OF CONVERGENCE;

EID: 84885635028     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (39)

References (25)
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing classifiers
    • L. Breiman. Prediction games and arcing classifiers. Neural Computation, 11(7):1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 5
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression adaboost and bregman distances
    • M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances. Machine Learning, 48(1/2/3), 2002.
    • (2002) Machine Learning , vol.48 , Issue.1-3
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 6
    • 0006444313 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Electrical Engineering, University of Queensland
    • M. Frean and T. Downs. A simple cost function for boosting. Technical report, Department of Computer Science and Electrical Engineering, University of Queensland, 1998.
    • (1998) A Simple Cost Function for Boosting
    • Frean, M.1    Downs, T.2
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, Aug. 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Apr
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28(2):337-374, Apr. 2000.
    • (2000) Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Oct
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), Oct. 2001.
    • (2001) Annals of Statistics , vol.29 , Issue.5
    • Friedman, J.H.1
  • 12
    • 0026678659 scopus 로고
    • On the convergence of the coordinate descent method for convex differentiable minimization
    • Jan
    • Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7-35, Jan. 1992.
    • (1992) Journal of Optimization Theory and Applications , vol.72 , Issue.1 , pp. 7-35
    • Luo, Z.Q.1    Tseng, P.2
  • 15
  • 16
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine Learning, 42(3): 287-320, 2001. (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 19
    • 50849110153 scopus 로고    scopus 로고
    • Analysis of boosting algorithms using the smooth margin function
    • C. Rudin, R. E. Schapire, and I. Daubechies. Analysis of boosting algorithms using the smooth margin function. Annals of Statistics, 35(6):2723-2768, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.6 , pp. 2723-2768
    • Rudin, C.1    Schapire, R.E.2    Daubechies, I.3
  • 21
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3):297-336, Dec. 1999. (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 22
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26(5):1651-1686, October 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 23
    • 84859446378 scopus 로고    scopus 로고
    • On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms
    • S. Shalev-Shwartz and Y. Singer. On the equivalence of weak learnability and linear separability: New relaxations and efficient boosting algorithms. In 21st Annual Conference on Learning Theory, 2008.
    • (2008) 21st Annual Conference on Learning Theory
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 25
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • DOI 10.1214/009053605000000255
    • T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. Annals of Statistics, 33(4):1538-1579, 2005. (Pubitemid 41423980)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1538-1579
    • Zhang, T.1    Yu, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.