메뉴 건너뛰기




Volumn 4, Issue , 2014, Pages 2917-2930

Deep boosting

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; DECISION TREES; LEARNING SYSTEMS;

EID: 84919832537     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (29)

References (28)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Bartlett, Peter L. and Mendelson, Shahar. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR, 3, 2002.
    • (2002) JMLR , vol.3
    • Bartlett, P.L.1    Mendelson, S.2
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, Eric and Kohavi, Ron. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2): 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, Leo. Bagging predictors. Machine Learning, 24 (2): 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, Leo. Prediction games and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1493-1517
    • Breiman, L.1
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, Thomas G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 71149103193 scopus 로고    scopus 로고
    • Boosting with structural sparsity
    • Duchi, John C. and Singer, Yoram. Boosting with structural sparsity. In ICML, pp. 38, 2009.
    • (2009) ICML
    • Duchi, J.C.1    Singer, Y.2
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Yoav and Schapire, Robert E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer System Sciences, 55(1): 119-139, 1997.
    • (1997) Journal of Computer System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 24344500472 scopus 로고    scopus 로고
    • Generalization bounds for averaged classifiers
    • Freund, Yoav, Mansour, Yishay, and Schapire, Robert E. Generalization bounds for averaged classifiers. The Annals of Statistics, 32:1698-1722, 2004.
    • (2004) The Annals of Statistics , vol.32 , pp. 1698-1722
    • Freund, Y.1    Mansour, Y.2    Schapire, R.E.3
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28:2000, 1998.
    • (2000) Annals of Statistics , vol.28 , pp. 1998
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the limit: Maximizing the margin of learned ensembles
    • Grove, Adam J and Schuurmans, Dale. Boosting in the limit: Maximizing the margin of learned ensembles. In AAAI/IAAI, pp. 692-699, 1998.
    • (1998) AAAI/IAAI , pp. 692-699
    • Grove, A.J.1    Schuurmans, D.2
  • 12
    • 0033280350 scopus 로고    scopus 로고
    • Boosting as entropy projection
    • Kivinen, Jyrki and Warmuth, Manfred K. Boosting as entropy projection. In COLT, pp. 134-144, 1999.
    • (1999) COLT , pp. 134-144
    • Kivinen, J.1    Warmuth, M.K.2
  • 13
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • Koltchinskii, Vladmir and Panchenko, Dmitry. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
    • (2002) Annals of Statistics , vol.30
    • Koltchinskii, V.1    Panchenko, D.2
  • 15
    • 0342313951 scopus 로고    scopus 로고
    • Pessimistic decision tree pruning based on tree size
    • Mansour, Yishay. Pessimistic decision tree pruning based on tree size. In Proceedings of ICML, pp. 195-201, 1997.
    • (1997) Proceedings of ICML , pp. 195-201
    • Mansour, Y.1
  • 17
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting, and C4.5
    • Quinlan, J. Ross. Bagging, boosting, and C4.5. In AAAI/IAAI, Vol. 1, pp. 725-730, 1996.
    • (1996) AAAI/IAAI , vol.1 , pp. 725-730
    • Quinlan, J.R.1
  • 18
    • 84937423775 scopus 로고    scopus 로고
    • Maximizing the margin with boosting
    • Ratsch, Gunnar and Warmuth, Manfred K. Maximizing the margin with boosting. In COLT, pp. 334-350, 2002.
    • (2002) COLT , pp. 334-350
    • Ratsch, G.1    Warmuth, M.K.2
  • 20
    • 70350222138 scopus 로고    scopus 로고
    • On the convergence of leveraging
    • Ratsch, Gunnar, Mika, Sebastian, and Warmuth, Manfred K. On the convergence of leveraging. In NIPS, pp. 487-494, 2001a.
    • (2001) NIPS , pp. 487-494
    • Ratsch, G.1    Mika, S.2    Warmuth, M.K.3
  • 21
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for adaboost
    • Ratsch, Gunnar, Onoda, Takashi, and Muller, Klaus- Robert. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001b.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 22
    • 34250705806 scopus 로고    scopus 로고
    • How boosting the margin can also boost classifier complexity
    • Reyzin, Lev and Schapire, Robert E. How boosting the margin can also boost classifier complexity. In ICML, pp. 753-760, 2006.
    • (2006) ICML , pp. 753-760
    • Reyzin, L.1    Schapire, R.E.2
  • 23
    • 84957085334 scopus 로고    scopus 로고
    • Theoretical views of boosting and applications
    • volume 1720 of Lecture Notes in Computer Science, Springer
    • Schapire, Robert E. Theoretical views of boosting and applications. In Proceedings of ALT 1999, volume 1720 of Lecture Notes in Computer Science, pp. 13-25. Springer, 1999.
    • (1999) Proceedings of ALT 1999 , pp. 13-25
    • Schapire, R.E.1
  • 24
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • Springer
    • Schapire, Robert E. The boosting approach to machine learning: An overview. In Nonlinear Estimation and Classification, pp. 149-172. Springer, 2003.
    • (2003) Nonlinear Estimation and Classification , pp. 149-172
    • Schapire, R.E.1
  • 25
    • 0002595663 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, Robert E., Freund, Yoav, Bartlett, Peter, and Lee, Wee Sun. Boosting the margin: A new explanation for the effectiveness of voting methods. In ICML, pp. 322- 330, 1997.
    • (1997) ICML , pp. 322-330
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 26
    • 0032661851 scopus 로고    scopus 로고
    • Linearly combining density estimators via stacking
    • July
    • Smyth, Padhraic and Wolpert, David. Linearly combining density estimators via stacking. Machine Learning, 36: 59-83, July 1999.
    • (1999) Machine Learning , vol.36 , pp. 59-83
    • Smyth, P.1    Wolpert, D.2
  • 28
    • 34250707319 scopus 로고    scopus 로고
    • Totally corrective boosting algorithms that maximize the margin
    • Warmuth, Manfred K., Liao, Jun, and Ratsch, Gunnar. Totally corrective boosting algorithms that maximize the margin. In ICML, pp. 1001-1008, 2006.
    • (2006) ICML , pp. 1001-1008
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.