-
1
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Bartlett, Peter L. and Mendelson, Shahar. Rademacher and Gaussian complexities: Risk bounds and structural results. JMLR, 3, 2002.
-
(2002)
JMLR
, vol.3
-
-
Bartlett, P.L.1
Mendelson, S.2
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, Eric and Kohavi, Ron. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2): 105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, Leo. Bagging predictors. Machine Learning, 24 (2): 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, Leo. Prediction games and arcing algorithms. Neural Computation, 11(7): 1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1517
-
-
Breiman, L.1
-
5
-
-
14344255621
-
Ensemble selection from libraries of models
-
Caruana, Rich, Niculescu-Mizil, Alexandru, Crew, Geoff, and Ksikes, Alex. Ensemble selection from libraries of models. In ICML, 2004.
-
(2004)
ICML
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
6
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, Thomas G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 40(2): 139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
7
-
-
71149103193
-
Boosting with structural sparsity
-
Duchi, John C. and Singer, Yoram. Boosting with structural sparsity. In ICML, pp. 38, 2009.
-
(2009)
ICML
-
-
Duchi, J.C.1
Singer, Y.2
-
8
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Yoav and Schapire, Robert E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer System Sciences, 55(1): 119-139, 1997.
-
(1997)
Journal of Computer System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
24344500472
-
Generalization bounds for averaged classifiers
-
Freund, Yoav, Mansour, Yishay, and Schapire, Robert E. Generalization bounds for averaged classifiers. The Annals of Statistics, 32:1698-1722, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 1698-1722
-
-
Freund, Y.1
Mansour, Y.2
Schapire, R.E.3
-
10
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, Jerome, Hastie, Trevor, and Tibshirani, Robert. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28:2000, 1998.
-
(2000)
Annals of Statistics
, vol.28
, pp. 1998
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
0031638384
-
Boosting in the limit: Maximizing the margin of learned ensembles
-
Grove, Adam J and Schuurmans, Dale. Boosting in the limit: Maximizing the margin of learned ensembles. In AAAI/IAAI, pp. 692-699, 1998.
-
(1998)
AAAI/IAAI
, pp. 692-699
-
-
Grove, A.J.1
Schuurmans, D.2
-
12
-
-
0033280350
-
Boosting as entropy projection
-
Kivinen, Jyrki and Warmuth, Manfred K. Boosting as entropy projection. In COLT, pp. 134-144, 1999.
-
(1999)
COLT
, pp. 134-144
-
-
Kivinen, J.1
Warmuth, M.K.2
-
13
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
Koltchinskii, Vladmir and Panchenko, Dmitry. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30, 2002.
-
(2002)
Annals of Statistics
, vol.30
-
-
Koltchinskii, V.1
Panchenko, D.2
-
15
-
-
0342313951
-
Pessimistic decision tree pruning based on tree size
-
Mansour, Yishay. Pessimistic decision tree pruning based on tree size. In Proceedings of ICML, pp. 195-201, 1997.
-
(1997)
Proceedings of ICML
, pp. 195-201
-
-
Mansour, Y.1
-
17
-
-
0030370417
-
Bagging, boosting, and C4.5
-
Quinlan, J. Ross. Bagging, boosting, and C4.5. In AAAI/IAAI, Vol. 1, pp. 725-730, 1996.
-
(1996)
AAAI/IAAI
, vol.1
, pp. 725-730
-
-
Quinlan, J.R.1
-
18
-
-
84937423775
-
Maximizing the margin with boosting
-
Ratsch, Gunnar and Warmuth, Manfred K. Maximizing the margin with boosting. In COLT, pp. 334-350, 2002.
-
(2002)
COLT
, pp. 334-350
-
-
Ratsch, G.1
Warmuth, M.K.2
-
20
-
-
70350222138
-
On the convergence of leveraging
-
Ratsch, Gunnar, Mika, Sebastian, and Warmuth, Manfred K. On the convergence of leveraging. In NIPS, pp. 487-494, 2001a.
-
(2001)
NIPS
, pp. 487-494
-
-
Ratsch, G.1
Mika, S.2
Warmuth, M.K.3
-
21
-
-
0342502195
-
Soft margins for adaboost
-
Ratsch, Gunnar, Onoda, Takashi, and Muller, Klaus- Robert. Soft margins for AdaBoost. Machine Learning, 42(3):287-320, 2001b.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.-R.3
-
22
-
-
34250705806
-
How boosting the margin can also boost classifier complexity
-
Reyzin, Lev and Schapire, Robert E. How boosting the margin can also boost classifier complexity. In ICML, pp. 753-760, 2006.
-
(2006)
ICML
, pp. 753-760
-
-
Reyzin, L.1
Schapire, R.E.2
-
23
-
-
84957085334
-
Theoretical views of boosting and applications
-
volume 1720 of Lecture Notes in Computer Science, Springer
-
Schapire, Robert E. Theoretical views of boosting and applications. In Proceedings of ALT 1999, volume 1720 of Lecture Notes in Computer Science, pp. 13-25. Springer, 1999.
-
(1999)
Proceedings of ALT 1999
, pp. 13-25
-
-
Schapire, R.E.1
-
24
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
Springer
-
Schapire, Robert E. The boosting approach to machine learning: An overview. In Nonlinear Estimation and Classification, pp. 149-172. Springer, 2003.
-
(2003)
Nonlinear Estimation and Classification
, pp. 149-172
-
-
Schapire, R.E.1
-
25
-
-
0002595663
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, Robert E., Freund, Yoav, Bartlett, Peter, and Lee, Wee Sun. Boosting the margin: A new explanation for the effectiveness of voting methods. In ICML, pp. 322- 330, 1997.
-
(1997)
ICML
, pp. 322-330
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
26
-
-
0032661851
-
Linearly combining density estimators via stacking
-
July
-
Smyth, Padhraic and Wolpert, David. Linearly combining density estimators via stacking. Machine Learning, 36: 59-83, July 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 59-83
-
-
Smyth, P.1
Wolpert, D.2
-
28
-
-
34250707319
-
Totally corrective boosting algorithms that maximize the margin
-
Warmuth, Manfred K., Liao, Jun, and Ratsch, Gunnar. Totally corrective boosting algorithms that maximize the margin. In ICML, pp. 1001-1008, 2006.
-
(2006)
ICML
, pp. 1001-1008
-
-
Warmuth, M.K.1
Liao, J.2
Ratsch, G.3
|