메뉴 건너뛰기




Volumn 1, Issue , 2017, Pages

The ins and outs of microorganism-electrode electron transfer reactions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85020933729     PISSN: None     EISSN: 23973358     Source Type: Journal    
DOI: 10.1038/s41570-017-0024     Document Type: Review
Times cited : (403)

References (145)
  • 2
    • 33748566549 scopus 로고    scopus 로고
    • Microbial fuel cells: Methodology and technology
    • Logan, B. E. et al. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40, 5181-5192 (2006).
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5181-5192
    • Logan, B.E.1
  • 3
    • 84895072628 scopus 로고    scopus 로고
    • Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives
    • Rosenbaum, M. A., Franks, A. E. Microbial catalysis in bioelectrochemical technologies: Status quo, challenges and perspectives. Appl. Microbiol. Biotechnol. 98, 509-518 (2014).
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 509-518
    • Rosenbaum, M.A.1    Franks, A.E.2
  • 4
    • 84888015677 scopus 로고    scopus 로고
    • A comprehensive review of microbial electrochemical systems as a platform technology
    • Wang, H., Ren, Z. J. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796-1807 (2013).
    • (2013) Biotechnol. Adv. , vol.31 , pp. 1796-1807
    • Wang, H.1    Ren, Z.J.2
  • 5
    • 84962523489 scopus 로고    scopus 로고
    • An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond
    • Bajracharya, S. et al. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energy 98, 153-170 (2016).
    • (2016) Renew. Energy , vol.98 , pp. 153-170
    • Bajracharya, S.1
  • 6
    • 34447523820 scopus 로고    scopus 로고
    • Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency
    • Schröder, U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9, 2619-2629 (2007).
    • (2007) Phys. Chem. Chem. Phys. , vol.9 , pp. 2619-2629
    • Schröder, U.1
  • 7
    • 84984890439 scopus 로고    scopus 로고
    • Microbial fuel cells-applications for generation of electrical power and beyond
    • Mathuriya, A. S., Yakhmi, J. V. Microbial fuel cells-applications for generation of electrical power and beyond. Crit. Rev. Microbiol. 7828, 1-17 (2014).
    • (2014) Crit. Rev. Microbiol. , vol.7828 , pp. 1-17
    • Mathuriya, A.S.1    Yakhmi, J.V.2
  • 10
    • 84866364928 scopus 로고    scopus 로고
    • Direct electron transfer based enzymatic fuel cells
    • Falk, M., Blum, Z., Shleev, S. Direct electron transfer based enzymatic fuel cells. Electrochim. Acta 82, 191-202 (2012).
    • (2012) Electrochim. Acta , vol.82 , pp. 191-202
    • Falk, M.1    Blum, Z.2    Shleev, S.3
  • 11
    • 0001555718 scopus 로고    scopus 로고
    • Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications
    • Ghindilis, A. L., Atanasov, P., Wilkins, E. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 9, 661-674 (1997).
    • (1997) Electroanalysis , vol.9 , pp. 661-674
    • Ghindilis, A.L.1    Atanasov, P.2    Wilkins, E.3
  • 12
    • 79951695669 scopus 로고    scopus 로고
    • Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells
    • Osman, M. H., Shah, A. A., Walsh, F. C. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron. 26, 3087-3102 (2011).
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 3087-3102
    • Osman, M.H.1    Shah, A.A.2    Walsh, F.C.3
  • 13
    • 84926683751 scopus 로고    scopus 로고
    • Microbial electrochemistry and technology: Terminology and classification
    • Schröder, U., Harnisch, F., Angenent, L. T. Microbial electrochemistry and technology: Terminology and classification. Energy Environ. Sci. 8, 513-519 (2015).
    • (2015) Energy Environ. Sci. , vol.8 , pp. 513-519
    • Schröder, U.1    Harnisch, F.2    Angenent, L.T.3
  • 14
    • 0034599876 scopus 로고    scopus 로고
    • Integration of layered redox proteins and conductive supports for bioelectronic applications
    • Willner, I., Katz, E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39, 1180-1218 (2000).
    • (2000) Angew. Chem. Int. Ed. , vol.39 , pp. 1180-1218
    • Willner, I.1    Katz, E.2
  • 16
    • 33645891453 scopus 로고    scopus 로고
    • Challenges in biocatalysis for enzyme-based biofuel cells
    • Kim, J., Jia, H., Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv. 24, 296-308 (2006).
    • (2006) Biotechnol. Adv. , vol.24 , pp. 296-308
    • Kim, J.1    Jia, H.2    Wang, P.3
  • 17
    • 0003932256 scopus 로고
    • Electrical effects accompanying the decomposition of organic compounds
    • Potter, M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. B. 84, 260-276 (1911).
    • (1911) Proc. R. Soc. Lond. B. , vol.84 , pp. 260-276
    • Potter, M.C.1
  • 18
    • 0002906445 scopus 로고
    • The bacterial culture as an electrical half-cell
    • Cohen, B. The bacterial culture as an electrical half-cell. J. Bacteriol. 21, 18-19 (1931).
    • (1931) J. Bacteriol. , vol.21 , pp. 18-19
    • Cohen, B.1
  • 19
    • 33746624663 scopus 로고    scopus 로고
    • Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
    • Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358-11363 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 11358-11363
    • Gorby, Y.A.1
  • 20
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1101 (2005).
    • (2005) Nature , vol.435 , pp. 1098-1101
    • Reguera, G.1
  • 21
    • 41649085415 scopus 로고    scopus 로고
    • Shewanella secretes flavins that mediate extracellular electron transfer
    • Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968-3973 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 3968-3973
    • Marsili, E.1
  • 22
    • 0034604081 scopus 로고    scopus 로고
    • A role for excreted quinones in extracellular electron transfer
    • Newman, D. K., Kolter, R. A role for excreted quinones in extracellular electron transfer. Nature 405, 94-97 (2000).
    • (2000) Nature , vol.405 , pp. 94-97
    • Newman, D.K.1    Kolter, R.2
  • 23
    • 34250639301 scopus 로고    scopus 로고
    • Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes
    • Shi, L., Squier, T. C., Zachara, J. M., Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12-20 (2007).
    • (2007) Mol. Microbiol. , vol.65 , pp. 12-20
    • Shi, L.1    Squier, T.C.2    Zachara, J.M.3    Fredrickson, J.K.4
  • 24
    • 84983245227 scopus 로고    scopus 로고
    • Electromicrobiology: Realities, grand challenges, goals and predictions
    • Nealson, K. H., Rowe, A. R. Electromicrobiology: Realities, grand challenges, goals and predictions. Microb. Biotechnol. 9, 595-600 (2016).
    • (2016) Microb. Biotechnol. , vol.9 , pp. 595-600
    • Nealson, K.H.1    Rowe, A.R.2
  • 25
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei, J., Liang, P., Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335-9344 (2011).
    • (2011) Bioresour. Technol. , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 26
    • 71549170875 scopus 로고    scopus 로고
    • A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
    • Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3-17 (2010).
    • (2010) FEMS Microbiol. Rev. , vol.34 , pp. 3-17
    • Torres, C.I.1
  • 27
    • 84870820002 scopus 로고    scopus 로고
    • Bacterial extracellular electron transfer in bioelectrochemical systems
    • Yang, Y., Xu, M., Guo, J., Sun, G. Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem. 47, 1707-1714 (2012).
    • (2012) Process Biochem. , vol.47 , pp. 1707-1714
    • Yang, Y.1    Xu, M.2    Guo, J.3    Sun, G.4
  • 28
    • 84870791628 scopus 로고    scopus 로고
    • Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
    • Patil, S. A., Hägerhäll, C., Gorton, L. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal. Rev. 4, 159-192 (2012).
    • (2012) Bioanal. Rev. , vol.4 , pp. 159-192
    • Patil, S.A.1    Hägerhäll, C.2    Gorton, L.3
  • 30
    • 77954856853 scopus 로고    scopus 로고
    • Extracellular electron transfer through microbial reduction of solid-phase humic substances
    • Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417-421 (2010).
    • (2010) Nat. Geosci. , vol.3 , pp. 417-421
    • Roden, E.E.1
  • 32
    • 27744493432 scopus 로고    scopus 로고
    • Multi-heme cytochromes-new structures, new chemistry
    • Mowat, C. G., Chapman, S. K. Multi-heme cytochromes-new structures, new chemistry. Dalton Trans. 3381-3389 (2005).
    • (2005) Dalton Trans. , pp. 3381-3389
    • Mowat, C.G.1    Chapman, S.K.2
  • 33
    • 29144451480 scopus 로고    scopus 로고
    • Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens
    • Mehta, T., Coppi, M. V., Childers, S. E., Lovley, D. R. Outer membrane c-type cytochromes required for Fe(iii) and Mn(iv) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71, 8634-8641 (2005).
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 8634-8641
    • Mehta, T.1    Coppi, M.V.2    Childers, S.E.3    Lovley, D.R.4
  • 34
    • 33745202132 scopus 로고    scopus 로고
    • Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens
    • Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8, 1805-1815 (2006).
    • (2006) Environ. Microbiol. , vol.8 , pp. 1805-1815
    • Holmes, D.E.1
  • 35
    • 66249098568 scopus 로고    scopus 로고
    • Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells
    • Nevin, K. P. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009).
    • (2009) PLoS ONE , vol.4 , pp. e5628
    • Nevin, K.P.1
  • 36
    • 67650032105 scopus 로고    scopus 로고
    • Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer
    • Richter, H. et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy Environ. Sci. 2, 506-516 (2009).
    • (2009) Energy Environ. Sci. , vol.2 , pp. 506-516
    • Richter, H.1
  • 37
    • 73649141295 scopus 로고    scopus 로고
    • The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis
    • Coursolle, D., Baron, D. B., Bond, D. R., Gralnick, J. A. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J. Bacteriol. 192, 467-474 (2010).
    • (2010) J. Bacteriol. , vol.192 , pp. 467-474
    • Coursolle, D.1    Baron, D.B.2    Bond, D.R.3    Gralnick, J.A.4
  • 38
    • 84964314061 scopus 로고    scopus 로고
    • Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities
    • Breuer, M., Rosso, K. M., Blumberger, J., Butt, J. N. Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. J. R. Soc. Interface 12, 20141117 (2015).
    • (2015) J. R. Soc. Interface , vol.12 , pp. 20141117
    • Breuer, M.1    Rosso, K.M.2    Blumberger, J.3    Butt, J.N.4
  • 40
    • 84984620269 scopus 로고    scopus 로고
    • Extracellular electron transfer mechanisms between microorganisms and minerals
    • Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651-662 (2016).
    • (2016) Nat. Rev. Microbiol. , vol.14 , pp. 651-662
    • Shi, L.1
  • 42
    • 84961751145 scopus 로고    scopus 로고
    • Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1
    • Xu, S., Jangir, Y., El-Naggar, M. Y. Disentangling the roles of free and cytochrome-bound flavins in extracellular electron transport from Shewanella oneidensis MR-1. Electrochim. Acta 198, 49-55 (2016).
    • (2016) Electrochim. Acta , vol.198 , pp. 49-55
    • Xu, S.1    Jangir, Y.2    El-Naggar, M.Y.3
  • 44
    • 84904890558 scopus 로고    scopus 로고
    • Plugging in or going wireless: Strategies for interspecies electron transfer
    • Shrestha, P. M., Rotaru, A. E. Plugging in or going wireless: Strategies for interspecies electron transfer. Front. Microbiol. 5, 237 (2014).
    • (2014) Front. Microbiol. , vol.5 , pp. 237
    • Shrestha, P.M.1    Rotaru, A.E.2
  • 45
    • 80052557316 scopus 로고    scopus 로고
    • Tunable metallic-like conductivity in microbial nanowire networks
    • Malvankar, N. S. et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573-579 (2011).
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 573-579
    • Malvankar, N.S.1
  • 46
    • 84907227973 scopus 로고    scopus 로고
    • Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components
    • Pirbadian, S. et al. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl Acad. Sci. USA 111, 12883-12888 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 12883-12888
    • Pirbadian, S.1
  • 47
    • 84994504379 scopus 로고    scopus 로고
    • Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'
    • Malvankar, N. S., Rotello, V. M., Tuominen, M. T., Lovley, D. R. Reply to 'Measuring conductivity of living Geobacter sulfurreducens biofilms'. Nat. Nanotechnol. 11, 913-914 (2016).
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 913-914
    • Malvankar, N.S.1    Rotello, V.M.2    Tuominen, M.T.3    Lovley, D.R.4
  • 48
    • 84994537843 scopus 로고    scopus 로고
    • Measuring conductivity of living Geobacter sulfurreducens biofilms
    • Yates, M. D. et al. Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat. Nanotechnol. 11, 910-913 (2016).
    • (2016) Nat. Nanotechnol. , vol.11 , pp. 910-913
    • Yates, M.D.1
  • 49
    • 84861842701 scopus 로고    scopus 로고
    • Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics
    • Malvankar, N. S., Lovley, D. R. Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5, 1039-1046 (2012).
    • (2012) ChemSusChem , vol.5 , pp. 1039-1046
    • Malvankar, N.S.1    Lovley, D.R.2
  • 50
    • 80055034132 scopus 로고    scopus 로고
    • Comment on On electrical conductivity of microbial nanowires & biofilms
    • by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender
    • Malvankar, N. S., Tuominen, M. T., Lovley, D. R. Comment on "On electrical conductivity of microbial nanowires & biofilms" by S. M. Strycharz-Glaven, R. M. Snider, A. Guiseppi-Elie and L. M. Tender. Energy Environ. Sci., 2011, 4, 4366.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 4366
    • Malvankar, N.S.1    Tuominen, M.T.2    Lovley, D.R.3
  • 51
    • 84857615325 scopus 로고    scopus 로고
    • Energy Environ. Sci. 5, 6247-6249 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6247-6249
  • 52
    • 84968808472 scopus 로고    scopus 로고
    • Comment on "on electrical conductivity of microbial nanowires & biofilms
    • by N. S. Malvankar M. T. Tuominen and D. R. Lovley
    • Strycharz-Glaven, S. M., Tender, L. M. Reply to the 'Comment on "On electrical conductivity of microbial nanowires & biofilms"' by N. S. Malvankar, M. T. Tuominen and D. R. Lovley. Energy Environ. Sci., 2012, 5, DOI:10.1039/c2ee02613a.
    • (2012) Energy Environ. Sci. , pp. 5
    • Strycharz-Glaven, S.M.1    The To Reply, M.T.L.2
  • 53
    • 84857593482 scopus 로고    scopus 로고
    • Energy Environ. Sci. 5, 6250-6255 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6250-6255
  • 55
    • 50849127130 scopus 로고    scopus 로고
    • Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode
    • Torres, C. I., Marcus, A. K., Parameswaran, P., Rittmann, B. E. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol. 42, 6593-6597 (2008).
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 6593-6597
    • Torres, C.I.1    Marcus, A.K.2    Parameswaran, P.3    Rittmann, B.E.4
  • 56
    • 84947203247 scopus 로고    scopus 로고
    • Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways
    • Yoho, R. A., Popat, S. C., Rago, L., Guisasola, A., Torres, C. I. Anode biofilms of Geoalkalibacter ferrihydriticus exhibit electrochemical signatures of multiple electron transport pathways. Langmuir 31, 12552-12559 (2015).
    • (2015) Langmuir , vol.31 , pp. 12552-12559
    • Yoho, R.A.1    Popat, S.C.2    Rago, L.3    Guisasola, A.4    Torres, C.I.5
  • 57
    • 77953897007 scopus 로고    scopus 로고
    • Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: Insights using cyclic voltammetry
    • Katuri, K. P., Kavanagh, P., Rengaraj, S., Leech, D. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: Insights using cyclic voltammetry. Chem. Commun. 46, 4758-4760 (2010).
    • (2010) Chem. Commun. , vol.46 , pp. 4758-4760
    • Katuri, K.P.1    Kavanagh, P.2    Rengaraj, S.3    Leech, D.4
  • 58
    • 79952378343 scopus 로고    scopus 로고
    • Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. Variant strain KN400
    • Strycharz, S. M. et al. Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400. Energy Environ. Sci. 4, 896-913 (2011).
    • (2011) Energy Environ. Sci. , vol.4 , pp. 896-913
    • Strycharz, S.M.1
  • 59
    • 84948844904 scopus 로고    scopus 로고
    • Thermally activated long range electron transport in living biofilms
    • Yates, M. D. et al. Thermally activated long range electron transport in living biofilms. Phys. Chem. Chem. Phys. 17, 32564-32570 (2015).
    • (2015) Phys. Chem. Chem. Phys. , vol.17 , pp. 32564-32570
    • Yates, M.D.1
  • 61
    • 81355147522 scopus 로고    scopus 로고
    • Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens
    • Schrott, G. D., Bonanni, P. S., Robuschi, L., Esteve-Nuz, A., Busalmen, J. P. Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens. Electrochim. Acta 56, 10791-10795 (2011).
    • (2011) Electrochim. Acta , vol.56 , pp. 10791-10795
    • Schrott, G.D.1    Bonanni, P.S.2    Robuschi, L.3    Esteve-Nuz, A.4    Busalmen, J.P.5
  • 62
    • 46749105548 scopus 로고    scopus 로고
    • The molecular density of states in bacterial nanowires
    • El-Naggar, M. Y., Gorby, Y., Xia, W., Nealson, K. H. The molecular density of states in bacterial nanowires. Biophys. J. 95, L10-L12 (2008).
    • (2008) Biophys. J. , vol.95 , pp. L10-L12
    • El-Naggar, M.Y.1    Gorby, Y.2    Xia, W.3    Nealson, K.H.4
  • 63
    • 84866537380 scopus 로고    scopus 로고
    • Multistep hopping and extracellular charge transfer in microbial redox chains
    • Pirbadian, S., El-Naggar, M. Y. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys. 14, 13802-13808 (2012).
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 13802-13808
    • Pirbadian, S.1    El-Naggar, M.Y.2
  • 64
    • 84930962189 scopus 로고    scopus 로고
    • Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway
    • Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815-823 (2015).
    • (2015) ACS Synth. Biol. , vol.4 , pp. 815-823
    • Yang, Y.1
  • 65
    • 84937243101 scopus 로고    scopus 로고
    • Improving mediated electron transport in anodic bioelectrocatalysis
    • Tao, L. et al. Improving mediated electron transport in anodic bioelectrocatalysis. Chem. Commun. 51, 12170-12173 (2015).
    • (2015) Chem. Commun. , vol.51 , pp. 12170-12173
    • Tao, L.1
  • 66
    • 84888788207 scopus 로고    scopus 로고
    • Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells
    • Yong, X. Y. et al. Enhancement of bioelectricity generation by manipulation of the electron shuttles synthesis pathway in microbial fuel cells. Bioresour. Technol. 152, 220-224 (2014).
    • (2014) Bioresour. Technol. , vol.152 , pp. 220-224
    • Yong, X.Y.1
  • 67
    • 84907486517 scopus 로고    scopus 로고
    • The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1-A mechanistic study
    • Kirchhofer, N. D. et al. The conjugated oligoelectrolyte DSSN+ enables exceptional coulombic efficiency via direct electron transfer for anode-respiring Shewanella oneidensis MR-1-A mechanistic study. Phys. Chem. Chem. Phys. 16, 20436-20443 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 20436-20443
    • Kirchhofer, N.D.1
  • 68
    • 84875192340 scopus 로고    scopus 로고
    • Conjugated oligoelectrolytes increase power generation in E. Coli microbial fuel cells
    • Hou, H. et al. Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593-1597 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 1593-1597
    • Hou, H.1
  • 69
    • 84894237849 scopus 로고    scopus 로고
    • Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1
    • Wang, V. B. et al. Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 41, 55-58 (2014).
    • (2014) Electrochem. Commun. , vol.41 , pp. 55-58
    • Wang, V.B.1
  • 70
    • 79951539607 scopus 로고    scopus 로고
    • Three-dimensional carbon nanotube textile anode for high-performance microbial fuel cells
    • Xie, X. et al. Three-dimensional carbon nanotube textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291-296 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 291-296
    • Xie, X.1
  • 71
    • 84860368898 scopus 로고    scopus 로고
    • Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
    • Xie, X. et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5, 6862-6866 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6862-6866
    • Xie, X.1
  • 72
    • 80855156803 scopus 로고    scopus 로고
    • A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell
    • Ji, J. et al. A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell. Colloids Surf. A 390, 56-61 (2011).
    • (2011) Colloids Surf. A , vol.390 , pp. 56-61
    • Ji, J.1
  • 73
    • 84909989274 scopus 로고    scopus 로고
    • Nanoparticle facilitated extracellular electron transfer in microbial fuel cells
    • Jiang, X. et al. Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737-6742 (2014).
    • (2014) Nano Lett. , vol.14 , pp. 6737-6742
    • Jiang, X.1
  • 74
    • 84861878892 scopus 로고    scopus 로고
    • The diversity of techniques to study electrochemically active biofilms highlights the need for standardization
    • Harnisch, F., Rabaey, K. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization. ChemSusChem 5, 1027-1038 (2012).
    • (2012) ChemSusChem , vol.5 , pp. 1027-1038
    • Harnisch, F.1    Rabaey, K.2
  • 75
    • 79952257691 scopus 로고    scopus 로고
    • In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy
    • Millo, D. et al. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed. 50, 2625-2627 (2011).
    • (2011) Angew. Chem. Int. Ed. , vol.50 , pp. 2625-2627
    • Millo, D.1
  • 76
    • 80051751685 scopus 로고    scopus 로고
    • Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms
    • Liu, Y., Kim, H., Franklin, R. R., Bond, D. R. Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12, 2235-2241 (2011).
    • (2011) ChemPhysChem , vol.12 , pp. 2235-2241
    • Liu, Y.1    Kim, H.2    Franklin, R.R.3    Bond, D.R.4
  • 77
    • 34347370683 scopus 로고    scopus 로고
    • Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1
    • Lower, B. H. et al. Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J. Bacteriol. 189, 4944-4952 (2007).
    • (2007) J. Bacteriol. , vol.189 , pp. 4944-4952
    • Lower, B.H.1
  • 78
    • 84861886646 scopus 로고    scopus 로고
    • A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity
    • Li, Z., Venkataraman, A., Rosenbaum, M. A., Angenent, L. T. A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem 5, 1119-1123 (2012).
    • (2012) ChemSusChem , vol.5 , pp. 1119-1123
    • Li, Z.1    Venkataraman, A.2    Rosenbaum, M.A.3    Angenent, L.T.4
  • 79
    • 84923061831 scopus 로고    scopus 로고
    • Microscale microbial fuel cells: Advances and challenges
    • Choi, S. Microscale microbial fuel cells: Advances and challenges. Biosens. Bioelectron. 69, 8-25 (2015).
    • (2015) Biosens. Bioelectron. , vol.69 , pp. 8-25
    • Choi, S.1
  • 80
    • 84933055141 scopus 로고    scopus 로고
    • A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces
    • Gross, B. J., El-Naggar, M. Y. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces. Rev. Sci. Instrum. 86, 064301 (2015).
    • (2015) Rev. Sci. Instrum. , vol.86 , pp. 064301
    • Gross, B.J.1    El-Naggar, M.Y.2
  • 81
    • 84889244489 scopus 로고    scopus 로고
    • Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1
    • Jiang, X. et al. Probing single-to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nat. Commun. 4, 2751 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2751
    • Jiang, X.1
  • 82
    • 78049289028 scopus 로고    scopus 로고
    • Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging
    • Jiang, X. et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl Acad. Sci. USA 107, 16806-16810 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 16806-16810
    • Jiang, X.1
  • 83
    • 84908254231 scopus 로고    scopus 로고
    • Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria
    • Hol, F. J. H., Dekker, C. Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014).
    • (2014) Science , vol.346 , pp. 1251821
    • Hol, F.J.H.1    Dekker, C.2
  • 84
    • 33748853295 scopus 로고    scopus 로고
    • Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction
    • Weber, K. A., Achenbach, L. A., Coates, J. D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752-764 (2006).
    • (2006) Nat. Rev. Microbiol. , vol.4 , pp. 752-764
    • Weber, K.A.1    Achenbach, L.A.2    Coates, J.D.3
  • 85
    • 84893422464 scopus 로고    scopus 로고
    • Corrosion of iron by sulfate-reducing bacteria: New views of an old problem
    • Enning, D., Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 80, 1226-1236 (2014).
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 1226-1236
    • Enning, D.1    Garrelfs, J.2
  • 86
    • 1542378939 scopus 로고    scopus 로고
    • Iron corrosion by novel anaerobic microorganisms
    • Dinh, H. T. et al. Iron corrosion by novel anaerobic microorganisms. Nature 427, 829-832 (2004).
    • (2004) Nature , vol.427 , pp. 829-832
    • Dinh, H.T.1
  • 87
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory, K. B., Bond, D. R., Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596-604 (2004).
    • (2004) Environ. Microbiol. , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 88
    • 79551652545 scopus 로고    scopus 로고
    • Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism
    • Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., Bond, D. R. Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6, e16649 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e16649
    • Ross, D.E.1    Flynn, J.M.2    Baron, D.B.3    Gralnick, J.A.4    Bond, D.R.5
  • 89
    • 78650170320 scopus 로고    scopus 로고
    • Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
    • Strycharz, S. M. et al. Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142-150 (2011).
    • (2011) Bioelectrochemistry , vol.80 , pp. 142-150
    • Strycharz, S.M.1
  • 90
    • 84927559065 scopus 로고    scopus 로고
    • Electrifying microbes for the production of chemicals
    • Tremblay, P. L., Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 6, 201 (2015).
    • (2015) Front. Microbiol. , vol.6 , pp. 201
    • Tremblay, P.L.1    Zhang, T.2
  • 91
    • 51649127655 scopus 로고    scopus 로고
    • Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
    • Strycharz, S. M. et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74, 5943-5947 (2008).
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 5943-5947
    • Strycharz, S.M.1
  • 92
    • 84862551526 scopus 로고    scopus 로고
    • Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination
    • Hsu, L., Masuda, S. A., Nealson, K. H., Pirbazari, M. Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. RSC Adv. 2, 5844-5855 (2012).
    • (2012) RSC Adv. , vol.2 , pp. 5844-5855
    • Hsu, L.1    Masuda, S.A.2    Nealson, K.H.3    Pirbazari, M.4
  • 93
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory, K. B., Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947 (2005).
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 94
    • 84878655138 scopus 로고    scopus 로고
    • Bioremediation of uranium-contaminated groundwater: A systems approach to subsurface biogeochemistry
    • Williams, K. H., Bargar, J. R., Lloyd, J. R., Lovley, D. R. Bioremediation of uranium-contaminated groundwater: A systems approach to subsurface biogeochemistry. Curr. Opin. Biotechnol. 24, 489-497 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 489-497
    • Williams, K.H.1    Bargar, J.R.2    Lloyd, J.R.3    Lovley, D.R.4
  • 95
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey, K., Rozendal, R. A. Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706-716 (2010).
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 96
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosyn thesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., Lovley, D. R. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103-10 (2010).
    • (2010) MBio , vol.1 , pp. e00103-e00110
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 97
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • Nevin, K. P. et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882-2886 (2011).
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 2882-2886
    • Nevin, K.P.1
  • 98
    • 84923349564 scopus 로고    scopus 로고
    • Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum
    • Choi, O., Kim, T., Woo, H. M., Um, Y. Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum. Sci. Rep. 4, 6961 (2014).
    • (2014) Sci. Rep. , vol.4 , pp. 6961
    • Choi, O.1    Kim, T.2    Woo, H.M.3    Um, Y.4
  • 99
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng, S., Xing, D., Call, D. F., Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958 (2009).
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 100
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • Deutzmann, J. S., Sahin, M., Spormann, A. M. Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6, e00496-15 (2015).
    • (2015) MBio , vol.6 , pp. e00496-e00515
    • Deutzmann, J.S.1    Sahin, M.2    Spormann, A.M.3
  • 102
    • 84936930771 scopus 로고    scopus 로고
    • Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier
    • Deng, X., Nakamura, R., Hashimoto, K., Okamoto, A. Electron extraction from an extracellular electrode by Desulfovibrio ferrophilus strain IS5 without using hydrogen as an electron carrier. Electrochemistry 83, 529-531 (2015).
    • (2015) Electrochemistry , vol.83 , pp. 529-531
    • Deng, X.1    Nakamura, R.2    Hashimoto, K.3    Okamoto, A.4
  • 104
    • 84876534565 scopus 로고    scopus 로고
    • Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: Recent progress and perspectives
    • Kavanagh, P., Leech, D. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: Recent progress and perspectives. Phys. Chem. Chem. Phys. 15, 4859-4869 (2013).
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 4859-4869
    • Kavanagh, P.1    Leech, D.2
  • 105
    • 46049112697 scopus 로고    scopus 로고
    • Kinetics of redox polymer-mediated enzyme electrodes
    • Gallaway, J. W., Calabrese Barton, S. A. Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 130, 8527-8536 (2008).
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 8527-8536
    • Gallaway, J.W.1    Calabrese Barton, S.A.2
  • 106
    • 33845664087 scopus 로고    scopus 로고
    • Influence of anode pretreatment on its microbial colonization
    • Liu, J. L., Lowy, D. A., Baumann, R. G., Tender, L. M. Influence of anode pretreatment on its microbial colonization. J. Appl. Microbiol. 102, 177-183 (2007).
    • (2007) J. Appl. Microbiol. , vol.102 , pp. 177-183
    • Liu, J.L.1    Lowy, D.A.2    Baumann, R.G.3    Tender, L.M.4
  • 107
    • 77957345664 scopus 로고    scopus 로고
    • Effect of nitrogen addition on the performance of microbial fuel cell anodes
    • Saito, T. et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes. Bioresour. Technol. 102, 395-398 (2011).
    • (2011) Bioresour. Technol. , vol.102 , pp. 395-398
    • Saito, T.1
  • 108
    • 84880128528 scopus 로고    scopus 로고
    • Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems
    • Guo, K. et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47, 7563-7570 (2013).
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 7563-7570
    • Guo, K.1
  • 109
    • 84885049682 scopus 로고    scopus 로고
    • Arylamine functionalization of carbon anodes for improved microbial electrocatalysis
    • Kumar, A., Conghaile, P. O., Katuri, K., Lens, P., Leech, D. Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Adv. 3, 18759-18761 (2013).
    • (2013) RSC Adv. , vol.3 , pp. 18759-18761
    • Kumar, A.1    Conghaile, P.O.2    Katuri, K.3    Lens, P.4    Leech, D.5
  • 110
    • 84902603337 scopus 로고    scopus 로고
    • Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems
    • Guo, K. et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ. Sci. Technol. 48, 7151-7156 (2014).
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7151-7156
    • Guo, K.1
  • 111
    • 84892770568 scopus 로고    scopus 로고
    • Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater
    • Liu, X. W., Li, W.-W., Yu, H. Q. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem. Soc. Rev. 43, 7718-7745 (2014).
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7718-7745
    • Liu, X.W.1    Li, W.-W.2    Yu, H.Q.3
  • 112
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • Jourdin, L. et al. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093-13102 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 13093-13102
    • Jourdin, L.1
  • 113
    • 77951018320 scopus 로고    scopus 로고
    • Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential
    • Marsili, E., Sun, J., Bond, D. R. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 22, 865-874 (2010).
    • (2010) Electroanalysis , vol.22 , pp. 865-874
    • Marsili, E.1    Sun, J.2    Bond, D.R.3
  • 114
    • 43049132496 scopus 로고    scopus 로고
    • Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes
    • Dumas, C., Basseguy, R., Bergel, A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53, 5235-5241 (2008).
    • (2008) Electrochim. Acta , vol.53 , pp. 5235-5241
    • Dumas, C.1    Basseguy, R.2    Bergel, A.3
  • 115
    • 77649237609 scopus 로고    scopus 로고
    • Marine aerobic biofilm as biocathode catalyst
    • Erable, B. et al. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78, 51-56 (2010).
    • (2010) Bioelectrochemistry , vol.78 , pp. 51-56
    • Erable, B.1
  • 116
    • 33751078830 scopus 로고    scopus 로고
    • Effect of electrode potential on electrode-reducing microbiota
    • Finkelstein, D. A., Tender, L. M., Zeikus, J. G. Effect of electrode potential on electrode-reducing microbiota. Environ. Sci. Technol. 40, 6990-6995 (2006).
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 6990-6995
    • Finkelstein, D.A.1    Tender, L.M.2    Zeikus, J.G.3
  • 117
    • 80052365896 scopus 로고    scopus 로고
    • Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output
    • Picot, M., Lapinsonnière, L., Rothballer, M., Barrière, F. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens. Bioelectron. 28, 181-188 (2011).
    • (2011) Biosens. Bioelectron. , vol.28 , pp. 181-188
    • Picot, M.1    Lapinsonnière, L.2    Rothballer, M.3    Barrière, F.4
  • 119
    • 84874996587 scopus 로고    scopus 로고
    • Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances
    • Lapinsonnière, L., Picot, M., Poriel, C., Barrière, F. Phenylboronic acid modified anodes promote faster biofilm adhesion and increase microbial fuel cell performances. Electroanalysis 25, 601-605 (2013).
    • (2013) Electroanalysis , vol.25 , pp. 601-605
    • Lapinsonnière, L.1    Picot, M.2    Poriel, C.3    Barrière, F.4
  • 120
    • 84921518288 scopus 로고    scopus 로고
    • Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4
    • Ding, C., Lv, M., Zhu, Y., Jiang, L., Liu, H. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 54, 1446-1451 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 1446-1451
    • Ding, C.1    Lv, M.2    Zhu, Y.3    Jiang, L.4    Liu, H.5
  • 121
    • 65549159078 scopus 로고    scopus 로고
    • Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron balances
    • Parameswaran, P., Torres, C. I., Lee, H. S., Krajmalnik-Brown, R., Rittmann, B. E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: Electron balances. Biotechnol. Bioeng. 103, 513-523 (2009).
    • (2009) Biotechnol. Bioeng. , vol.103 , pp. 513-523
    • Parameswaran, P.1    Torres, C.I.2    Lee, H.S.3    Krajmalnik-Brown, R.4    Rittmann, B.E.5
  • 122
    • 49049118534 scopus 로고    scopus 로고
    • Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis
    • Cracknell, J. A., Vincent, K. A., Armstrong, F. A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439-2461 (2008).
    • (2008) Chem. Rev. , vol.108 , pp. 2439-2461
    • Cracknell, J.A.1    Vincent, K.A.2    Armstrong, F.A.3
  • 123
    • 0032515430 scopus 로고    scopus 로고
    • Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers
    • El Kasmi, A., Wallace, J. M., Bowden, E. F., Binet, S. M., Linderman, R. J. Controlling interfacial electron-transfer kinetics of cytochrome c with mixed self-assembled monolayers. J. Am. Chem. Soc. 120, 225-226 (1998).
    • (1998) J. Am. Chem. Soc. , vol.120 , pp. 225-226
    • El Kasmi, A.1    Wallace, J.M.2    Bowden, E.F.3    Binet, S.M.4    Linderman, R.J.5
  • 124
    • 84867391541 scopus 로고    scopus 로고
    • Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability
    • Wang, G. X., Bao, W. J., Wang, M., Xia, X. H. Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability. Chem. Commun. 48, 10859-10861 (2012).
    • (2012) Chem. Commun. , vol.48 , pp. 10859-10861
    • Wang, G.X.1    Bao, W.J.2    Wang, M.3    Xia, X.H.4
  • 125
    • 0000147327 scopus 로고
    • Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold
    • Song, S., Clark, R. A., Bowden, E. F., Tarlov, M. J. Characterization of cytochrome c/alkanethiolate structures prepared by self-assembly on gold. J. Phys. Chem. 97, 6564-6572 (1993).
    • (1993) J. Phys. Chem. , vol.97 , pp. 6564-6572
    • Song, S.1    Clark, R.A.2    Bowden, E.F.3    Tarlov, M.J.4
  • 126
    • 84870157992 scopus 로고    scopus 로고
    • Electrochemical communication between microbial cells and electrodes via osmium redox systems
    • Hasan, K., Patil, S., Leech, D., Hägerhäll, C., Gorton, L. Electrochemical communication between microbial cells and electrodes via osmium redox systems. Biochem. Soc. Trans. 40, 1330-1335 (2012).
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1330-1335
    • Hasan, K.1    Patil, S.2    Leech, D.3    Hägerhäll, C.4    Gorton, L.5
  • 127
    • 84888119441 scopus 로고    scopus 로고
    • Sol-gel based 'artificial' biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator
    • Ghach, W., Etienne, M., Urbanova, V., Jorand, F. P. A., Walcarius, A. Sol-gel based 'artificial' biofilm from Pseudomonas fluorescens using bovine heart cytochrome c as electron mediator. Electrochem. Commun. 38, 71-74 (2014).
    • (2014) Electrochem. Commun. , vol.38 , pp. 71-74
    • Ghach, W.1    Etienne, M.2    Urbanova, V.3    Jorand, F.P.A.4    Walcarius, A.5
  • 128
    • 11944262355 scopus 로고
    • Electrical wiring of redox enzymes
    • Heller, A. Electrical wiring of redox enzymes. Acc. Chem. Res. 23, 128-134 (1990).
    • (1990) Acc. Chem. Res. , vol.23 , pp. 128-134
    • Heller, A.1
  • 129
    • 84924957137 scopus 로고    scopus 로고
    • Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes
    • Hamidi, H. et al. Photocurrent generation from thylakoid membranes on osmium-redox-polymer-modified electrodes. ChemSusChem 8, 990-993 (2015).
    • (2015) ChemSusChem , vol.8 , pp. 990-993
    • Hamidi, H.1
  • 130
    • 84908406448 scopus 로고    scopus 로고
    • Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes
    • Hasan, K. et al. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes. Phys. Chem. Chem. Phys. 16, 24676-24680 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 24676-24680
    • Hasan, K.1
  • 131
    • 84881404831 scopus 로고    scopus 로고
    • Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
    • Nie, H. et al. Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15, 14290-14294 (2013).
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 14290-14294
    • Nie, H.1
  • 132
    • 84871347686 scopus 로고    scopus 로고
    • Improved cathode materials for microbial electrosynthesis
    • Zhang, T. et al. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217-224 (2013).
    • (2013) Energy Environ. Sci. , vol.6 , pp. 217-224
    • Zhang, T.1
  • 133
    • 84861850710 scopus 로고    scopus 로고
    • Importance of OH transport from cathodes in microbial fuel cells
    • Popat, S. C., Ki, D., Rittmann, B. E., Torres, C. I. Importance of OH transport from cathodes in microbial fuel cells. ChemSusChem 5, 1071-1079 (2012).
    • (2012) ChemSusChem , vol.5 , pp. 1071-1079
    • Popat, S.C.1    Ki, D.2    Rittmann, B.E.3    Torres, C.I.4
  • 134
    • 84978071094 scopus 로고    scopus 로고
    • High resolution AFM and single-cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth
    • Lebedev, N., Strycharz-Glaven, S. M., Tender, L. M. High resolution AFM and single-cell resonance Raman spectroscopy of Geobacter sulfurreducens biofilms early in growth. Front. Energy Res. 2, 34 (2014).
    • (2014) Front. Energy Res. , vol.2 , pp. 34
    • Lebedev, N.1    Strycharz-Glaven, S.M.2    Tender, L.M.3
  • 135
    • 84880930412 scopus 로고    scopus 로고
    • Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration
    • Kumar, A. et al. Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chem. Eng. J. 230, 532-536 (2013).
    • (2013) Chem. Eng. J. , vol.230 , pp. 532-536
    • Kumar, A.1
  • 136
    • 84898769832 scopus 로고    scopus 로고
    • Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness
    • Jana, P. S., Katuri, K., Kavanagh, P., Kumar, A., Leech, D. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Phys. Chem. Chem. Phys. 16, 9039-9046 (2014).
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 9039-9046
    • Jana, P.S.1    Katuri, K.2    Kavanagh, P.3    Kumar, A.4    Leech, D.5
  • 137
    • 84870202134 scopus 로고    scopus 로고
    • Does bioelectrochemical cell configuration and anode potential affect biofilm response
    • Kumar, A., Katuri, K., Lens, P., Leech, D. Does bioelectrochemical cell configuration and anode potential affect biofilm response Biochem. Soc. Trans. 40, 1308-1314 (2012).
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1308-1314
    • Kumar, A.1    Katuri, K.2    Lens, P.3    Leech, D.4
  • 138
    • 40849092415 scopus 로고    scopus 로고
    • The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy
    • Tender, L. M. et al. The first demonstration of a microbial fuel cell as a viable power supply: Powering a meteorological buoy. J. Power Sources 179, 571-575 (2008).
    • (2008) J. Power Sources , vol.179 , pp. 571-575
    • Tender, L.M.1
  • 139
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • Chaudhuri, S. K., Lovley, D. R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21, 1229-1232 (2003).
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 140
    • 0037074898 scopus 로고    scopus 로고
    • A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella putrefaciens
    • Kim, H. J. et al. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30, 145-152 (2002).
    • (2002) Enzyme Microb. Technol. , vol.30 , pp. 145-152
    • Kim, H.J.1
  • 141
    • 0024191542 scopus 로고
    • Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese
    • Lovley, D. R., Phillips, E. J. P. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472-1480 (1988).
    • (1988) Appl. Environ. Microbiol. , vol.54 , pp. 1472-1480
    • Lovley, D.R.1    Phillips, E.J.P.2
  • 142
    • 0024219883 scopus 로고
    • Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor
    • Myers, C. R., Nealson, K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319-1321 (1988).
    • (1988) Science , vol.240 , pp. 1319-1321
    • Myers, C.R.1    Nealson, K.H.2
  • 143
    • 84994779156 scopus 로고    scopus 로고
    • Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community
    • Yates, M. D. et al. Toward understanding long-distance extracellular electron transport in an electroautotrophic microbial community. Energy Environ. Sci. 9, 3544-3588 (2016).
    • (2016) Energy Environ. Sci. , vol.9 , pp. 3544-3588
    • Yates, M.D.1
  • 144
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • Ueki, T., Nevin, K. P., Woodard, T. L., Lovley, D. R. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636-14 (2014).
    • (2014) MBio , vol.5 , pp. e01636-e01714
    • Ueki, T.1    Nevin, K.P.2    Woodard, T.L.3    Lovley, D.R.4
  • 145
    • 84874062525 scopus 로고    scopus 로고
    • Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes
    • Kane, A. L., Bond, D. R., Gralnick, J. A. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth. Biol. 2, 93-101 (2013).
    • (2013) ACS Synth. Biol. , vol.2 , pp. 93-101
    • Kane, A.L.1    Bond, D.R.2    Gralnick, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.