-
1
-
-
64749102025
-
Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators
-
1:CAS:528:DC%2BD1MXlt1Kksbo%3D 19160378 10.1002/bit.22234
-
Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103:85-91
-
(2009)
Biotechnol Bioeng
, vol.103
, pp. 85-91
-
-
Aulenta, F.1
Canosa, A.2
Reale, P.3
Rossetti, S.4
Panero, S.5
Majone, M.6
-
2
-
-
84881109235
-
Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms
-
1:CAS:528:DC%2BC3sXovVSitLw%3D 23698325 10.1039/c3cp50411e
-
Bonanni PS, Massazza D, Busalmen JP (2013) Stepping stones in the electron transport from cells to electrodes in Geobacter sulfurreducens biofilms. Phys Chem Chem Phys 15:10300-10306
-
(2013)
Phys Chem Chem Phys
, vol.15
, pp. 10300-10306
-
-
Bonanni, P.S.1
Massazza, D.2
Busalmen, J.P.3
-
3
-
-
79954824352
-
Integrating microbial ecology in bioprocess understanding: The case of gas biofiltration
-
1:CAS:528:DC%2BC3MXks1WntL4%3D 21424795 10.1007/s00253-011-3191-9
-
Cabrol L, Malhautier L (2011) Integrating microbial ecology in bioprocess understanding: the case of gas biofiltration. Appl Microbiol Biotechnol 90:837-849
-
(2011)
Appl Microbiol Biotechnol
, vol.90
, pp. 837-849
-
-
Cabrol, L.1
Malhautier, L.2
-
4
-
-
12844252604
-
Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors
-
DOI 10.1016/j.bios.2004.06.003, PII S0956566304002441
-
Chang IS, Moon H, Jang JK, Kim BH (2005) Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20:1856-1859 (Pubitemid 40170158)
-
(2005)
Biosensors and Bioelectronics
, vol.20
, Issue.9
, pp. 1856-1859
-
-
Chang, I.S.1
Moon, H.2
Jang, J.K.3
Kim, B.H.4
-
5
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
1:CAS:528:DC%2BD1MXjvFaltrw%3D 19544913 10.1021/es803531g
-
Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953-3958
-
(2009)
Environ Sci Technol
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
6
-
-
79952558400
-
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
-
1:CAS:528:DC%2BC3MXitlakur0%3D 21305277 10.1007/s00253-011-3130-9
-
Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053-2063
-
(2011)
Appl Microbiol Biotechnol
, vol.89
, pp. 2053-2063
-
-
Cusick, R.D.1
Bryan, B.2
Parker, D.S.3
Merrill, M.D.4
Mehanna, M.5
Kiely, P.D.6
Liu, G.7
Logan, B.E.8
-
7
-
-
72249101946
-
Analysis and improvement of a scaled-up and stacked microbial fuel cell
-
1:CAS:528:DC%2BD1MXhtFKktL%2FK 19943685 10.1021/es901939r
-
Dekker A, Heijne AT, Saakes M, Hamelers HVM, Buisman CJN (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ Sci Technol 43:9038-9042
-
(2009)
Environ Sci Technol
, vol.43
, pp. 9038-9042
-
-
Dekker, A.1
Heijne, A.T.2
Saakes, M.3
Hamelers, H.V.M.4
Buisman, C.J.N.5
-
8
-
-
84879816867
-
Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system
-
1:CAS:528:DC%2BC3sXpvV2nsrk%3D 3697554 23603684 10.1128/AEM.00569-13
-
Dennis PG, Harnisch F, Yeoh YK, Tyson GW, Rabaey K (2013) Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol 79:4008-4014
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 4008-4014
-
-
Dennis, P.G.1
Harnisch, F.2
Yeoh, Y.K.3
Tyson, G.W.4
Rabaey, K.5
-
9
-
-
0024997534
-
Enhanced propionate formation by Propionibacterium freudenreichii subsp. Freudenreichii in a three-electrode amperometric culture system
-
Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56:2771-2776 (Pubitemid 20273110)
-
(1990)
Applied and Environmental Microbiology
, vol.56
, Issue.9
, pp. 2771-2776
-
-
Emde, R.1
Schink, B.2
-
10
-
-
79952147700
-
Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria
-
1:CAS:528:DC%2BC3MXms1Cqsw%3D%3D 2975363 21060736 10.1128/mBio.00190-10
-
Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA (2010) Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio 1:e00190-00110
-
(2010)
MBio
, vol.1
, pp. 00190-00110
-
-
Flynn, J.M.1
Ross, D.E.2
Hunt, K.A.3
Bond, D.R.4
Gralnick, J.A.5
-
11
-
-
77951806527
-
Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
-
1:CAS:528:DC%2BC3cXktVWlu7g%3D 20356090 10.1021/es100125h
-
Foley JM, Rozendal RA, Hertle CR, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44:3629-3637
-
(2010)
Environ Sci Technol
, vol.44
, pp. 3629-3637
-
-
Foley, J.M.1
Rozendal, R.A.2
Hertle, C.R.3
Lant, P.A.4
Rabaey, K.5
-
12
-
-
77950981854
-
Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells
-
1:CAS:528:DC%2BC3cXls12iur8%3D 10.1002/elan.200980011
-
Fornero JJ, Rosenbaum M, Angenent LT (2010a) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 22:832-843
-
(2010)
Electroanalysis
, vol.22
, pp. 832-843
-
-
Fornero, J.J.1
Rosenbaum, M.2
Angenent, L.T.3
-
13
-
-
77950440326
-
Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity
-
1:CAS:528:DC%2BC3cXitlaktL8%3D 20178380 10.1021/es9031985
-
Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT (2010b) Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity. Environ Sci Technol 44:2728-2734
-
(2010)
Environ Sci Technol
, vol.44
, pp. 2728-2734
-
-
Fornero, J.J.1
Rosenbaum, M.2
Cotta, M.A.3
Angenent, L.T.4
-
14
-
-
77953160485
-
Microbial fuel cells, a current review
-
1:CAS:528:DC%2BC3cXmtF2nsLc%3D 10.3390/en3050899
-
Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3:899-919
-
(2010)
Energies
, vol.3
, pp. 899-919
-
-
Franks, A.E.1
Nevin, K.P.2
-
15
-
-
70549089986
-
Electron transfer pathways in microbial oxygen biocathodes
-
1:CAS:528:DC%2BD1MXhsFWlsLrK 10.1016/j.electacta.2009.09.027
-
Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55:813-818
-
(2010)
Electrochim Acta
, vol.55
, pp. 813-818
-
-
Freguia, S.1
Tsujimura, S.2
Kano, K.3
-
16
-
-
84855816886
-
A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration
-
1:CAS:528:DC%2BC38XpsFektQ%3D%3D 22209069 10.1016/j.bios.2011.12.013
-
Friedman ES, Rosenbaum MA, Lee AW, Lipson DA, Land BR, Angenent LT (2012) A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosens Bioelectron 32:309-313
-
(2012)
Biosens Bioelectron
, vol.32
, pp. 309-313
-
-
Friedman, E.S.1
Rosenbaum, M.A.2
Lee, A.W.3
Lipson, D.A.4
Land, B.R.5
Angenent, L.T.6
-
17
-
-
79957862655
-
Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system
-
1:CAS:528:DC%2BC3MXls1Ogsbc%3D 21545151 10.1021/es104383q
-
Gong Y, Radachowsky SE, Wolf M, Nielsen ME, Girguis PR, Reimers CE (2011) Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ Sci Technol 45:5047-5053
-
(2011)
Environ Sci Technol
, vol.45
, pp. 5047-5053
-
-
Gong, Y.1
Radachowsky, S.E.2
Wolf, M.3
Nielsen, M.E.4
Girguis, P.R.5
Reimers, C.E.6
-
18
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
DOI 10.1021/es050457e
-
Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943-8947 (Pubitemid 41636169)
-
(2005)
Environmental Science and Technology
, vol.39
, Issue.22
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
19
-
-
79961024498
-
Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater
-
1:CAS:528:DC%2BC3MXpsFSku70%3D 10.1016/j.jpowsour.2011.06.027
-
Hays S, Zhang F, Logan BE (2011) Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J Power Sources 196:8293-8300
-
(2011)
J Power Sources
, vol.196
, pp. 8293-8300
-
-
Hays, S.1
Zhang, F.2
Logan, B.E.3
-
20
-
-
84954932034
-
Application of electro-energizing method to l-glutamic acid fermentation
-
1:CAS:528:DyaL3cXks1eg 10.1271/bbb1961.43.2075
-
Hongo M, Iwahara M (1979) Application of electro-energizing method to l-glutamic acid fermentation. Agr Biol Chem Tokyo 43:2075-2081
-
(1979)
Agr Biol Chem Tokyo
, vol.43
, pp. 2075-2081
-
-
Hongo, M.1
Iwahara, M.2
-
21
-
-
77958092093
-
Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell
-
1:CAS:528:DC%2BC3cXhtFGgsLrK 20217142 10.1007/s00449-010-0417-7
-
Huang L, Chen J, Quan X, Yang F (2010) Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng 33:937-945
-
(2010)
Bioprocess Biosyst Eng
, vol.33
, pp. 937-945
-
-
Huang, L.1
Chen, J.2
Quan, X.3
Yang, F.4
-
22
-
-
84861847093
-
Microbial fuel cells for robotics: Energy autonomy through artificial symbiosis
-
1:CAS:528:DC%2BC38XotVeruro%3D 22674692 10.1002/cssc.201200283
-
Ieropoulos IA, Greenman J, Melhuish C, Horsfield I (2012) Microbial fuel cells for robotics: energy autonomy through artificial symbiosis. ChemSusChem 5:1020-1026
-
(2012)
ChemSusChem
, vol.5
, pp. 1020-1026
-
-
Ieropoulos, I.A.1
Greenman, J.2
Melhuish, C.3
Horsfield, I.4
-
23
-
-
0001462037
-
Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent
-
1:CAS:528:DyaL1cXhs1Cmtrk%3D 10.1007/BF01024638
-
Kim TS, Kim BH (1988) Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol Lett 10:123-128
-
(1988)
Biotechnol Lett
, vol.10
, pp. 123-128
-
-
Kim, T.S.1
Kim, B.H.2
-
24
-
-
84874582197
-
Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis
-
1:CAS:528:DC%2BC3sXlsFCqs74%3D 3551548 23322638 10.1128/mBio.00553-12
-
Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4:e00553-00512
-
(2013)
MBio
, vol.4
, pp. 00553-00512
-
-
Kotloski, N.J.1
Gralnick, J.A.2
-
25
-
-
84878846838
-
Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production
-
1:CAS:528:DC%2BC3sXnvFyrsrY%3D 10.1039/c3ee40441b
-
Leang C, Malvankar NS, Franks AE, Nevin KP, Lovley DR (2013) Engineering Geobacter sulfurreducens to produce a highly cohesive conductive matrix with enhanced capacity for current production. Energy Environ Sci 6:1901-1908
-
(2013)
Energy Environ Sci
, vol.6
, pp. 1901-1908
-
-
Leang, C.1
Malvankar, N.S.2
Franks, A.E.3
Nevin, K.P.4
Lovley, D.R.5
-
26
-
-
84879086317
-
Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior
-
1:CAS:528:DC%2BC3sXotFWhur4%3D 10.1021/nl400237p
-
Leung KM, Wanger G, El-Naggar MY, Gorby Y, Southam G, Lau WM, Yang J (2013) Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Let 13:2407-2411
-
(2013)
Nano Let
, vol.13
, pp. 2407-2411
-
-
Leung, K.M.1
Wanger, G.2
El-Naggar, M.Y.3
Gorby, Y.4
Southam, G.5
Lau, W.M.6
Yang, J.7
-
27
-
-
84861886646
-
A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity
-
1:CAS:528:DC%2BC38XotVensL8%3D 22674693 10.1002/cssc.201100736
-
Li Z, Venkataraman A, Rosenbaum MA, Angenent LT (2012) A laminar-flow microfluidic device for quantitative analysis of microbial electrochemical activity. ChemSusChem 5:1119-1123
-
(2012)
ChemSusChem
, vol.5
, pp. 1119-1123
-
-
Li, Z.1
Venkataraman, A.2
Rosenbaum, M.A.3
Angenent, L.T.4
-
28
-
-
2342470161
-
Extracting hydrogen and energy from renewable resources
-
Logan BE (2004) Extracting hydrogen and energy from renewable resources. Environ Sci Techno 38:160-167
-
(2004)
Environ Sci Techno
, vol.38
, pp. 160-167
-
-
Logan, B.E.1
-
29
-
-
64749084426
-
Exoelectrogenic bacteria that power microbial fuel cells
-
1:CAS:528:DC%2BD1MXjsl2gu7g%3D 19330018 10.1038/nrmicro2113
-
Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375-381
-
(2009)
Nat Rev Microbiol
, vol.7
, pp. 375-381
-
-
Logan, B.E.1
-
30
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
1:CAS:528:DC%2BC3cXhtVaqtbc%3D 20013119 10.1007/s00253-009-2378-9
-
Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665-1671
-
(2010)
Appl Microbiol Biotechnol
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
31
-
-
84864831407
-
Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
-
1:CAS:528:DC%2BC38XhtFCktb%2FI 22879507 10.1126/science.1217412
-
Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686-690
-
(2012)
Science
, vol.337
, pp. 686-690
-
-
Logan, B.E.1
Rabaey, K.2
-
32
-
-
0025890073
-
Dissimilatory Fe(III) and Mn(IV) reduction
-
1:CAS:528:DyaK3MXltFSjtLY%3D 372814 1886521
-
Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259-287
-
(1991)
Microbiol Rev
, vol.55
, pp. 259-287
-
-
Lovley, D.R.1
-
33
-
-
82555168002
-
Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
-
1:CAS:528:DC%2BC3MXhsFKlurjO 10.1039/c1ee02229f
-
Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4:4896-4906
-
(2011)
Energy Environ Sci
, vol.4
, pp. 4896-4906
-
-
Lovley, D.R.1
-
34
-
-
84870016648
-
Electromicrobiology
-
1:CAS:528:DC%2BC38XhsF2iurrP 22746334 10.1146/annurev-micro-092611-150104
-
Lovley DR (2012) Electromicrobiology. Annu Rev Microbiol 66:391-409
-
(2012)
Annu Rev Microbiol
, vol.66
, pp. 391-409
-
-
Lovley, D.R.1
-
35
-
-
84861842701
-
Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics
-
1:CAS:528:DC%2BC38XntlSksbs%3D 22614997 10.1002/cssc.201100733
-
Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5:1039-1046
-
(2012)
ChemSusChem
, vol.5
, pp. 1039-1046
-
-
Malvankar, N.S.1
Lovley, D.R.2
-
36
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
1:CAS:528:DC%2BC38Xhs1yktrbJ 3497389 23001672 10.1128/AEM.02401-12
-
Marshall CW, Ross DE, Fichot EB, Norman RS, May HD (2012) Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl Environ Microbiol 78:8412-8420
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
37
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
DOI 10.1073/pnas.0710525105
-
Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968-3973 (Pubitemid 351723508)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.10
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnick, J.A.5
Bond, D.R.6
-
38
-
-
77949569063
-
Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis
-
1:CAS:528:DC%2BC3cXktVais7w%3D 19717350 10.1016/j.bioelechem.2009.08.004
-
Masuda M, Freguia S, Wang YF, Tsujimura S, Kano K (2010) Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis. Bioelectrochemistry 78:173-175
-
(2010)
Bioelectrochemistry
, vol.78
, pp. 173-175
-
-
Masuda, M.1
Freguia, S.2
Wang, Y.F.3
Tsujimura, S.4
Kano, K.5
-
39
-
-
80052564960
-
Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
-
1:CAS:528:DC%2BC3MXht1Chs77F 3157894 21862629 10.1128/mBio.00159-11
-
Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159-00111
-
(2011)
MBio
, vol.2
, pp. 00159-00111
-
-
Morita, M.1
Malvankar, N.S.2
Franks, A.E.3
Summers, Z.M.4
Giloteaux, L.5
Rotaru, A.E.6
Rotaru, C.7
Lovley, D.R.8
-
40
-
-
0026532734
-
Microbial reduction of manganese and iron: New approaches to carbon cycling
-
1:CAS:528:DyaK38XhsVOmur4%3D 195266 1610166
-
Nealson KH, Myers CR (1992) Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439-443
-
(1992)
Appl Environ Microbiol
, vol.58
, pp. 439-443
-
-
Nealson, K.H.1
Myers, C.R.2
-
41
-
-
78650173757
-
Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
2921159 20714445 10.1128/mBio.00103-10
-
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1:e00103-00110
-
(2010)
MBio
, vol.1
, pp. 00103-00110
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
42
-
-
84861997084
-
Microbial communities involved in enhanced biological phosphorus removal from wastewater - A model system in environmental biotechnology
-
1:CAS:528:DC%2BC38Xot12jur0%3D 22197171 10.1016/j.copbio.2011.11.027
-
Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater - a model system in environmental biotechnology. Curr Opin Biotechnol 23:452-459
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 452-459
-
-
Nielsen, P.H.1
Saunders, A.M.2
Hansen, A.A.3
Larsen, P.4
Nielsen, J.L.5
-
43
-
-
77956819000
-
Toxicity response of electroactive microbial biofilms - A decisive feature for potential biosensor and power source applications
-
1:CAS:528:DC%2BC3cXhtFCnsLjJ 20607711 10.1002/cphc.201000218
-
Patil S, Harnisch F, Schröder U (2010) Toxicity response of electroactive microbial biofilms - a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834-2837
-
(2010)
ChemPhysChem
, vol.11
, pp. 2834-2837
-
-
Patil, S.1
Harnisch, F.2
Schröder, U.3
-
44
-
-
84868626806
-
Filamentous bacteria transport electrons over centimetre distances
-
1:CAS:528:DC%2BC38XhsFOmt7fN 23103872 10.1038/nature11586
-
Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218-221
-
(2012)
Nature
, vol.491
, pp. 218-221
-
-
Pfeffer, C.1
Larsen, S.2
Song, J.3
Dong, M.4
Besenbacher, F.5
Meyer, R.L.6
Kjeldsen, K.U.7
Schreiber, L.8
Gorby, Y.A.9
El-Naggar, M.Y.10
Leung, K.M.11
Schramm, A.12
Risgaard-Petersen, N.13
Nielsen, L.P.14
-
45
-
-
77957147094
-
Microbial electrosynthesis - Revisiting the electrical route for microbial production
-
1:CAS:528:DC%2BC3cXhtFGqtbfO 20844557 10.1038/nrmicro2422
-
Rabaey K, Rozendal RA (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706-716
-
(2010)
Nat Rev Microbiol
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
46
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
1:CAS:528:DC%2BD2MXisFajsbo%3D 15926596 10.1021/es048563o
-
Rabaey K, Boon N, Verstraete W, Höfte M (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401-3408
-
(2005)
Environ Sci Technol
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Verstraete, W.3
Höfte, M.4
-
47
-
-
77952899135
-
High current generation coupled to caustic production using a lamellar bioelectrochemical system
-
1:CAS:528:DC%2BC3cXlslWgs70%3D 20446659 10.1021/es9037963
-
Rabaey K, Bützer S, Brown S, Jr K, Rozendal RA (2010) High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ Sci Technol 44:4315-4321
-
(2010)
Environ Sci Technol
, vol.44
, pp. 4315-4321
-
-
Rabaey, K.1
Bützer, S.2
Brown Jr., S.K.3
Rozendal, R.A.4
-
48
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
DOI 10.1038/nature03661
-
Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098-1101 (Pubitemid 40910516)
-
(2005)
Nature
, vol.435
, Issue.7045
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
49
-
-
33751014053
-
Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells
-
DOI 10.1128/AEM.01444-06
-
Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345-7348 (Pubitemid 44748452)
-
(2006)
Applied and Environmental Microbiology
, vol.72
, Issue.11
, pp. 7345-7348
-
-
Reguera, G.1
Nevin, K.P.2
Nicoll, J.S.3
Covalla, S.F.4
Woodard, T.L.5
Lovley, D.R.6
-
50
-
-
52949140887
-
Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells
-
1:CAS:528:DC%2BD1cXht1CmtbrN 18725730 10.2166/wst.2008.431
-
Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58:617-622
-
(2008)
Water Sci Technol
, vol.58
, pp. 617-622
-
-
Ren, Z.1
Steinberg, L.M.2
Regan, J.M.3
-
51
-
-
77953357003
-
Integrating BES in the wastewater and sludge treatment line
-
K. Rabaey (eds) et al. International Water Association London
-
Rosenbaum M, Agler MT, Fornero JJ, Venkataraman A, Angenent LT (2010) Integrating BES in the wastewater and sludge treatment line. In: Rabaey K et al (eds) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. International Water Association, London, pp 393-408
-
(2010)
Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application
, pp. 393-408
-
-
Rosenbaum, M.1
Agler, M.T.2
Fornero, J.J.3
Venkataraman, A.4
Angenent, L.T.5
-
52
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
-
1:CAS:528:DC%2BC3cXht1CgsLnF 20688515 10.1016/j.biortech.2010.07.008
-
Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102:324-333
-
(2011)
Bioresour Technol
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
53
-
-
79551652545
-
Towards electrosynthesis in Shewanella: Energetics of reversing the Mtr pathway for reductive metabolism
-
Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6
-
(2011)
PLoS One
, pp. 6
-
-
Ross, D.E.1
Flynn, J.M.2
Baron, D.B.3
Gralnick, J.A.4
Bond, D.R.5
-
54
-
-
40949122427
-
Hydrogen production with a microbial biocathode
-
DOI 10.1021/es071720+
-
Rozendal RA, Jeremiasse AW, Hamelers HV, Buisman CJ (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629-634 (Pubitemid 351461920)
-
(2008)
Environmental Science and Technology
, vol.42
, Issue.2
, pp. 629-634
-
-
Rozendal, R.A.1
Jeremiasse, A.W.2
Hamelers, H.V.M.3
Buisman, C.J.N.4
-
55
-
-
69549109859
-
Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system
-
1:CAS:528:DC%2BD1MXhtV2ksr7F 10.1016/j.elecom.2009.07.008
-
Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11:1752-1755
-
(2009)
Electrochem Commun
, vol.11
, pp. 1752-1755
-
-
Rozendal, R.A.1
Leone, E.2
Keller, J.3
Rabaey, K.4
-
56
-
-
34948887836
-
Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine
-
DOI 10.1002/bit.21427
-
Sakai S, Yagishita T (2007) Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol Bioeng 98:340-348 (Pubitemid 47518057)
-
(2007)
Biotechnology and Bioengineering
, vol.98
, Issue.2
, pp. 340-348
-
-
Sakai, S.1
Yagishita, T.2
-
57
-
-
34250639301
-
Respiration of metal (hydr)oxides by Shewanella and Geobacter: A key role for multihaem c-type cytochromes
-
DOI 10.1111/j.1365-2958.2007.05783.x
-
Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12-20 (Pubitemid 46934494)
-
(2007)
Molecular Microbiology
, vol.65
, Issue.1
, pp. 12-20
-
-
Shi, L.1
Squier, T.C.2
Zachara, J.M.3
Fredrickson, J.K.4
-
58
-
-
51649127655
-
Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi
-
1:CAS:528:DC%2BD1cXht1ektbzM 2565976 18658278 10.1128/AEM.00961-08
-
Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Loffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74:5943-5947
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 5943-5947
-
-
Strycharz, S.M.1
Woodard, T.L.2
Johnson, J.P.3
Nevin, K.P.4
Sanford, R.A.5
Loffler, F.E.6
Lovley, D.R.7
-
59
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
1:CAS:528:DC%2BC3cXhsF2htLbJ 20696622 10.1016/j.bioelechem.2010.07.005
-
Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142-150
-
(2011)
Bioelectrochemistry
, vol.80
, pp. 142-150
-
-
Strycharz, S.M.1
Glaven, R.H.2
Coppi, M.V.3
Gannon, S.M.4
Perpetua, L.A.5
Liu, A.6
Nevin, K.P.7
Lovley, D.R.8
-
60
-
-
84861897508
-
Study of the mechanism of catalytic activity of G. Sulfurreducens biofilm anodes during biofilm growth
-
Strycharz-Glaven SM, Tender LM (2012) Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth. ChemSusChem 5:1106-1118
-
(2012)
ChemSusChem
, vol.5
, pp. 1106-1118
-
-
Strycharz-Glaven, S.M.1
Tender, L.M.2
-
61
-
-
78649707496
-
Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
-
1:CAS:528:DC%2BC3cXhsVyrsbbJ 21127257 10.1126/science.1196526
-
Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413-1415
-
(2010)
Science
, vol.330
, pp. 1413-1415
-
-
Summers, Z.M.1
Fogarty, H.E.2
Leang, C.3
Franks, A.E.4
Malvankar, N.S.5
Lovley, D.R.6
-
62
-
-
82555176829
-
Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act
-
10.1039/c1ee02455h
-
TerAvest MA, Li Z, Angenent LT (2011) Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ Sci 4:4907-4916
-
(2011)
Energy Environ Sci
, vol.4
, pp. 4907-4916
-
-
Teravest, M.A.1
Li, Z.2
Angenent, L.T.3
-
63
-
-
84894249637
-
Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system
-
in print. doi: 10.1002/bit.25128
-
TerAvest MA, Rosenbaum MA, Kotloski NJ, Gralnick JA, Angenent LT (2013) Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnol Bioeng in print. doi: 10.1002/bit.25128
-
(2013)
Biotechnol Bioeng
-
-
Teravest, M.A.1
Rosenbaum, M.A.2
Kotloski, N.J.3
Gralnick, J.A.4
Angenent, L.T.5
-
64
-
-
84878861361
-
A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella
-
1:CAS:528:DC%2BC3sXnvFyrsbg%3D 10.1039/c3ee00071k
-
Thomas AW, Garner LE, Nevin KP, Woodard TL, Franks AE, Lovley DR, Sumner JJ, Sund CJ, Bazan GC (2013a) A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella. Energy Environ Sci 6:1761-1765
-
(2013)
Energy Environ Sci
, vol.6
, pp. 1761-1765
-
-
Thomas, A.W.1
Garner, L.E.2
Nevin, K.P.3
Woodard, T.L.4
Franks, A.E.5
Lovley, D.R.6
Sumner, J.J.7
Sund, C.J.8
Bazan, G.C.9
-
65
-
-
84878927480
-
A single sediment-microbial fuel cell powering a wireless telecommunication system
-
1:CAS:528:DC%2BC3sXhtV2lurfI 10.1016/j.jpowsour.2013.05.016
-
Thomas YRJ, Picot M, Carer A, Berder O, Sentieys O, Barriere F (2013b) A single sediment-microbial fuel cell powering a wireless telecommunication system. J Power Sources 241:703-708
-
(2013)
J Power Sources
, vol.241
, pp. 703-708
-
-
Thomas, Y.R.J.1
Picot, M.2
Carer, A.3
Berder, O.4
Sentieys, O.5
Barriere, F.6
-
66
-
-
84869890170
-
Bio-electrochemical post-treatment of anaerobically treated landfill leachate
-
1:CAS:528:DC%2BC3sXhvFSmtr4%3D 23196249 10.1016/j.biortech.2012.10.035
-
Tugtas AE, Cavdar P, Calli B (2013) Bio-electrochemical post-treatment of anaerobically treated landfill leachate. Bioresour Technol 128:266-272
-
(2013)
Bioresour Technol
, vol.128
, pp. 266-272
-
-
Tugtas, A.E.1
Cavdar, P.2
Calli, B.3
-
67
-
-
80055035199
-
Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems
-
1:CAS:528:DC%2BC3MXhsVyrtb3I 10.1039/c1ee01377g
-
Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT (2011) Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci 4:4550-4559
-
(2011)
Energy Environ Sci
, vol.4
, pp. 4550-4559
-
-
Venkataraman, A.1
Rosenbaum, M.A.2
Perkins, S.D.3
Werner, J.J.4
Angenent, L.T.5
-
68
-
-
34247361210
-
Microbial Resource Management: The road to go for environmental biotechnology
-
DOI 10.1002/elsc.200620176
-
Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117-126 (Pubitemid 46638065)
-
(2007)
Engineering in Life Sciences
, vol.7
, Issue.2
, pp. 117-126
-
-
Verstraete, W.1
Wittebolle, L.2
Heylen, K.3
Vanparys, B.4
De Vos, P.5
Van De Wiele, T.6
Boon, N.7
-
69
-
-
84872382450
-
Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems
-
1:CAS:528:DC%2BC3sXjtFSqs78%3D 23333921 10.1016/j.bios.2012.12.029
-
Wang X, Gao N, Zhou Q (2013) Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens Bioelectron 43:264-267
-
(2013)
Biosens Bioelectron
, vol.43
, pp. 264-267
-
-
Wang, X.1
Gao, N.2
Zhou, Q.3
-
70
-
-
79951539607
-
Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells
-
1:CAS:528:DC%2BC3cXhsFKqtbnO 21158405 10.1021/nl103905t
-
Xie X, Hu L, Pasta M, Wells GF, Kong D, Criddle CS, Cui Y (2011) Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett 11:291-296
-
(2011)
Nano Lett
, vol.11
, pp. 291-296
-
-
Xie, X.1
Hu, L.2
Pasta, M.3
Wells, G.F.4
Kong, D.5
Criddle, C.S.6
Cui, Y.7
-
71
-
-
84867743199
-
Convergent development of anodic bacterial communities in microbial fuel cells
-
1:CAS:528:DC%2BC38XhsFers7nE 22572637 10.1038/ismej.2012.42
-
Yates MD, Kiely PD, Call DF, Rismani-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. Isme J 6:2002-2013
-
(2012)
Isme J
, vol.6
, pp. 2002-2013
-
-
Yates, M.D.1
Kiely, P.D.2
Call, D.F.3
Rismani-Yazdi, H.4
Bibby, K.5
Peccia, J.6
Regan, J.M.7
Logan, B.E.8
-
72
-
-
68649121076
-
A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation
-
1:CAS:528:DC%2BD1MXhtVSltr7P 19604688 10.1016/j.biortech.2009.06.045
-
Zhang B, Zhao H, Zhou S, Shi C, Wang C, Ni J (2009) A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. Bioresour Technol 100:5687-5693
-
(2009)
Bioresour Technol
, vol.100
, pp. 5687-5693
-
-
Zhang, B.1
Zhao, H.2
Zhou, S.3
Shi, C.4
Wang, C.5
Ni, J.6
-
73
-
-
77954635013
-
Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor
-
1:CAS:528:DC%2BC3cXmtFCrs7g%3D 20105223 10.1111/j.1462-2920.2009.02145.x
-
Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR (2010) Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12:1011-1020
-
(2010)
Environ Microbiol
, vol.12
, pp. 1011-1020
-
-
Zhang, T.1
Gannon, S.M.2
Nevin, K.P.3
Franks, A.E.4
Lovley, D.R.5
-
74
-
-
80052490841
-
Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes
-
1:CAS:528:DC%2BC3MXhtFWktrvP 10.1016/j.jpowsour.2011.07.037
-
Zhang F, Tian L, He Z (2011) Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes. J Power Sources 196:9568-9573
-
(2011)
J Power Sources
, vol.196
, pp. 9568-9573
-
-
Zhang, F.1
Tian, L.2
He, Z.3
-
75
-
-
27844504697
-
Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells
-
DOI 10.1016/j.elecom.2005.09.032, PII S1388248105002912
-
Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405-1410 (Pubitemid 41660204)
-
(2005)
Electrochemistry Communications
, vol.7
, Issue.12
, pp. 1405-1410
-
-
Zhao, F.1
Harnisch, F.2
Schroder, U.3
Scholz, F.4
Bogdanoff, P.5
Herrmann, I.6
-
76
-
-
79952280859
-
An overview of electrode materials in microbial fuel cells
-
1:CAS:528:DC%2BC3MXjt12qtLc%3D 10.1016/j.jpowsour.2011.01.012
-
Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196:4427-4435
-
(2011)
J Power Sources
, vol.196
, pp. 4427-4435
-
-
Zhou, M.H.1
Chi, M.L.2
Luo, J.M.3
He, H.H.4
Jin, T.5
|