메뉴 건너뛰기




Volumn 6, Issue MAR, 2015, Pages

Electrifying microbes for the production of chemicals

Author keywords

Bioelectrochemical systems; CO2 reduction; Electricity; Electron transfer mechanisms; Microbial electrosynthesis

Indexed keywords

ACIDITHIOBACILLUS FERROOXIDANS; AMMONIA OXIDIZING BACTERIUM; AUTOTROPHY; BACTERIAL METABOLISM; BACTERIUM CULTURE; BIOCATALYSIS; CATALYST; CLOSTRIDIUM; CUPRIAVIDUS NECATOR; ELECTRIC CURRENT; ELECTRON TRANSPORT; ENERGY CONVERSION; GEOBACTER SULFURREDUCENS; METHANOCOCCUS MARIPALUDIS; MICROBIAL COMMUNITY; MICROBIAL ELECTRODE; MICROBIAL ELECTROSYNTHESIS; MOORELLA THERMOACETICA; NITROSOMONAS EUROPAEA; NONHUMAN; PHOTOSYNTHESIS; RENEWABLE ENERGY; REVIEW; RHODOPSEUDOMONAS PALUSTRIS;

EID: 84927559065     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2015.00201     Document Type: Review
Times cited : (171)

References (86)
  • 1
    • 84902596879 scopus 로고    scopus 로고
    • Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
    • Andersen, S. J., Hennebel, T., Gildemyn, S., Coma, M., Desloover, J., Berton, J., et al. (2014). Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48, 7135-7142. doi: 10.1021/es500483w.
    • (2014) Environ. Sci. Technol , vol.48 , pp. 7135-7142
    • Andersen, S.J.1    Hennebel, T.2    Gildemyn, S.3    Coma, M.4    Desloover, J.5    Berton, J.6
  • 2
    • 84896905548 scopus 로고    scopus 로고
    • A Lactose-Inducible system for metabolic engineering of Clostridium ljungdahlii
    • Banerjee, A., Leang, C., Ueki, T., Nevin, K. P., and Lovley, D. R. (2014). A Lactose-Inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410-2416. doi: 10.1128/AEM.03666-13.
    • (2014) Appl. Environ. Microbiol , vol.80 , pp. 2410-2416
    • Banerjee, A.1    Leang, C.2    Ueki, T.3    Nevin, K.P.4    Lovley, D.R.5
  • 3
    • 84908413509 scopus 로고    scopus 로고
    • Electron uptake by iron-oxidizing phototrophic bacteria
    • Bose, A., Gardel, E. J., Vidoudez, C., Parra, E. A., and Girguis, P. R. (2014). Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391. doi: 10.1038/ncomms4391.
    • (2014) Nat. Commun , vol.5 , pp. 3391
    • Bose, A.1    Gardel, E.J.2    Vidoudez, C.3    Parra, E.A.4    Girguis, P.R.5
  • 4
    • 70349108272 scopus 로고    scopus 로고
    • A new method for water desalination using microbial desalination cells
    • Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., et al. (2009). A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43, 7148-7152. doi: 10.1021/es901950j.
    • (2009) Environ. Sci. Technol , vol.43 , pp. 7148-7152
    • Cao, X.1    Huang, X.2    Liang, P.3    Xiao, K.4    Zhou, Y.5    Zhang, X.6
  • 5
    • 77956937778 scopus 로고    scopus 로고
    • Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen
    • Carbajosa, S., Malki, M., Caillard, R., Lopez, M. F., Palomares, F. J., Martin-Gago, J. A., et al. (2010). Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26, 877-880. doi: 10.1016/j.bios.2010.07.037.
    • (2010) Biosens. Bioelectron , vol.26 , pp. 877-880
    • Carbajosa, S.1    Malki, M.2    Caillard, R.3    Lopez, M.F.4    Palomares, F.J.5    Martin-Gago, J.A.6
  • 6
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • Cheng, S., and Logan, B. E. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 18871-18873. doi: 10.1073/pnas.0706379104.
    • (2007) Proc. Natl. Acad. Sci. U.S.A , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 7
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • Cheng, S., Xing, D., Call, D. F., and Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958. doi: 10.1021/es803531g.
    • (2009) Environ. Sci. Technol , vol.43 , pp. 3953-3958
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 8
    • 2342553511 scopus 로고    scopus 로고
    • Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens
    • Coppi, M. V., O'Neil, R. A., and Lovley, D. R. (2004). Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J. Bacteriol. 186, 3022-3028. doi: 10.1128/JB.186.10.3022-3028.2004.
    • (2004) J. Bacteriol , vol.186 , pp. 3022-3028
    • Coppi, M.V.1    O'Neil, R.A.2    Lovley, D.R.3
  • 9
    • 84969234067 scopus 로고    scopus 로고
    • Towards electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris
    • Doud, D. F. R., and Angenent, L. T. (2014). Towards electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ. Sci. Technol. Lett. 1, 351-355. doi: 10.1021/ez500244n.
    • (2014) Environ. Sci. Technol. Lett , vol.1 , pp. 351-355
    • Doud, D.F.R.1    Angenent, L.T.2
  • 10
    • 0030838596 scopus 로고    scopus 로고
    • Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?
    • Drake, H. L., Daniel, S. L., Kusel, K., Matthies, C., Kuhner, C., and Braus-Stromeyer, S. (1997). Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? Biofactors 6, 13-24. doi: 10.1002/biof.5520060103.
    • (1997) Biofactors , vol.6 , pp. 13-24
    • Drake, H.L.1    Daniel, S.L.2    Kusel, K.3    Matthies, C.4    Kuhner, C.5    Braus-Stromeyer, S.6
  • 12
    • 37349062455 scopus 로고    scopus 로고
    • Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
    • Dumas, C., Basseguy, R., and Bergel, A. (2008). Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta 53, 2494-2500. doi: 10.1016/j.electacta.2007.10.018.
    • (2008) Electrochim. Acta , vol.53 , pp. 2494-2500
    • Dumas, C.1    Basseguy, R.2    Bergel, A.3
  • 13
    • 84874116531 scopus 로고    scopus 로고
    • Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
    • Fast, A. G., and Papousakis, E. T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1, 380-395. doi: 10.1016/j.coche.2012.07.005.
    • (2012) Curr. Opin. Chem. Eng , vol.1 , pp. 380-395
    • Fast, A.G.1    Papousakis, E.T.2
  • 14
    • 84901339219 scopus 로고    scopus 로고
    • Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens
    • Feist, A. M., Nagarajan, H., Rotaru, A. E., Tremblay, P. L., Zhang, T., Nevin, K. P., et al. (2014). Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. PLoS Comput. Biol. 10:e1003575. doi: 10.1371/journal.pcbi.1003575PCOMPBIOL-D-13-01735.
    • (2014) PLoS Comput. Biol , vol.10
    • Feist, A.M.1    Nagarajan, H.2    Rotaru, A.E.3    Tremblay, P.L.4    Zhang, T.5    Nevin, K.P.6
  • 17
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • Gregory, K. B., Bond, D. R., and Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596-604. doi: 10.1111/j.1462-2920.2004.00593.x.
    • (2004) Environ. Microbiol , vol.6 , pp. 596-604
    • Gregory, K.B.1    Bond, D.R.2    Lovley, D.R.3
  • 18
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • Gregory, K. B., and Lovley, D. R. (2005). Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947. doi: 10.1021/es050457e.
    • (2005) Environ. Sci. Technol , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 19
    • 84905169324 scopus 로고    scopus 로고
    • Recent advances in microbial electrocatalysis
    • Hallenbeck, P. C., Grogger, M., and Veverka, D. (2014). Recent advances in microbial electrocatalysis. Electrocatalysis 5, 319-329. doi: 10.1007/s12678-014-0198-x.
    • (2014) Electrocatalysis , vol.5 , pp. 319-329
    • Hallenbeck, P.C.1    Grogger, M.2    Veverka, D.3
  • 20
    • 84901927152 scopus 로고    scopus 로고
    • Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells
    • Huang, L. P., Jiang, L., Wang, Q., Quan, X., Yang, J., and Chen, L. (2014). Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chem. Eng. J. 253, 281-290. doi: 10.1016/j.cej.2014.05.080.
    • (2014) Chem. Eng. J , vol.253 , pp. 281-290
    • Huang, L.P.1    Jiang, L.2    Wang, Q.3    Quan, X.4    Yang, J.5    Chen, L.6
  • 21
    • 84899454055 scopus 로고    scopus 로고
    • Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system
    • Jiang, Y., Su, M., and Li, D. (2014). Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system. Appl. Biochem. Biotechnol. 172, 2720-2731. doi: 10.1007/s12010-013-0718-9.
    • (2014) Appl. Biochem. Biotechnol , vol.172 , pp. 2720-2731
    • Jiang, Y.1    Su, M.2    Li, D.3
  • 22
    • 84874661053 scopus 로고    scopus 로고
    • Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate
    • Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., and Li, D. (2013). Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen. Ener. 38, 3497-3502. doi:10.1016/j.ijhydene.2012.12.107.
    • (2013) Int. J. Hydrogen. Ener , vol.38 , pp. 3497-3502
    • Jiang, Y.1    Su, M.2    Zhang, Y.3    Zhan, G.4    Tao, Y.5    Li, D.6
  • 23
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • Jourdin, L., Freguia, S., Donose, B. C., Chen, J., Wallace, G. G., Keller, J., et al. (2014). A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093-13102. doi: 10.1039/c4ta03101f.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 13093-13102
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Chen, J.4    Wallace, G.G.5    Keller, J.6
  • 24
    • 84901612043 scopus 로고    scopus 로고
    • Utilization of surplus electricity from wind power for dynamic biogas upgrading: Nothern Germany case study
    • Jürgensen, L., Ehimen, E. A., Born, J., and Holm-Nielsen, J. B. (2014). Utilization of surplus electricity from wind power for dynamic biogas upgrading: Nothern Germany case study. Biomass Bioenergy 66, 126-132. doi: 10.1016/j.biombioe.2014.02.032.
    • (2014) Biomass Bioenergy , vol.66 , pp. 126-132
    • Jürgensen, L.1    Ehimen, E.A.2    Born, J.3    Holm-Nielsen, J.B.4
  • 25
    • 84917694522 scopus 로고    scopus 로고
    • Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
    • Kato, S., Yumoto, I., and Kamagata, Y. (2015). Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81, 67-73. doi: 10.1128/AEM.02767-14.
    • (2015) Appl. Environ. Microbiol , vol.81 , pp. 67-73
    • Kato, S.1    Yumoto, I.2    Kamagata, Y.3
  • 26
    • 84866556635 scopus 로고    scopus 로고
    • Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell
    • Khunjar, W. O., Sahin, A., West, A. C., Chandran, K., and Banta, S. (2012). Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS ONE 7:e44846. doi: 10.1371/journal.pone.0044846.
    • (2012) PLoS ONE , vol.7
    • Khunjar, W.O.1    Sahin, A.2    West, A.C.3    Chandran, K.4    Banta, S.5
  • 27
    • 0013769829 scopus 로고
    • Method for electrolysis of culture medium to increase growth of the sulfur-oxidizing iron bacterium Ferrobacillus sulfooxidans
    • Kinsel, N. A., and Umbreit, W. W. (1964). Method for electrolysis of culture medium to increase growth of the sulfur-oxidizing iron bacterium Ferrobacillus sulfooxidans. J. Bacteriol. 87, 1243-1244.
    • (1964) J. Bacteriol , vol.87 , pp. 1243-1244
    • Kinsel, N.A.1    Umbreit, W.W.2
  • 28
    • 84878193965 scopus 로고    scopus 로고
    • Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor
    • Kobayashi, H., Saito, N., Fu, Q., Kawaguchi, H., Vilcaez, J., Wakayama, T., et al. (2013). Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J. Biosci. Bioeng. 116, 114-117. doi: 10.1016/j.jbiosc.2013.01.001.
    • (2013) J. Biosci. Bioeng , vol.116 , pp. 114-117
    • Kobayashi, H.1    Saito, N.2    Fu, Q.3    Kawaguchi, H.4    Vilcaez, J.5    Wakayama, T.6
  • 29
    • 77955610491 scopus 로고    scopus 로고
    • Clostridium ljungdahlii represents a microbial production platform based on syngas
    • Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., et al. (2010). Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U.S.A. 107, 13087-13092. doi: 10.1073/pnas.1004716107.
    • (2010) Proc. Natl. Acad. Sci. U.S.A , vol.107 , pp. 13087-13092
    • Köpke, M.1    Held, C.2    Hujer, S.3    Liesegang, H.4    Wiezer, A.5    Wollherr, A.6
  • 30
    • 84923930357 scopus 로고    scopus 로고
    • Identifying target processes for microbial electrosynthesis by elementary mode analysis
    • Kracke, F., and Krömer, J. O. (2014). Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15:6590. doi: 10.1186/s12859-014-0410-2.
    • (2014) BMC Bioinformatics , vol.15 , pp. 6590
    • Kracke, F.1    Krömer, J.O.2
  • 31
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • Krieg, T., Sydow, A., Schroder, U., Schrader, J., and Holtmann, D. (2014). Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645-655. doi: 10.1016/j.tibtech.2014.10.004.
    • (2014) Trends Biotechnol , vol.32 , pp. 645-655
    • Krieg, T.1    Sydow, A.2    Schroder, U.3    Schrader, J.4    Holtmann, D.5
  • 32
    • 84908021230 scopus 로고    scopus 로고
    • Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
    • LaBelle, E. V., Marshall, C. W., Gilbert, J. A., and May, H. D. (2014). Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS ONE 9:e109935. doi: 10.1371/journal.pone.0109935.
    • (2014) PLoS ONE , vol.9
    • LaBelle, E.V.1    Marshall, C.W.2    Gilbert, J.A.3    May, H.D.4
  • 33
    • 84874738185 scopus 로고    scopus 로고
    • A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen
    • Leang, C., Ueki, T., Nevin, K. P., and Lovley, D. R. (2013). A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79, 1102-1109. doi: 10.1128/AEM.02891-12.
    • (2013) Appl. Environ. Microbiol , vol.79 , pp. 1102-1109
    • Leang, C.1    Ueki, T.2    Nevin, K.P.3    Lovley, D.R.4
  • 34
    • 84859111827 scopus 로고    scopus 로고
    • Integrated electromicrobial conversion of CO2 to higher alcohols
    • Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T. Y., Higashide, W., et al. (2012). Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596. doi: 10.1126/science.1217643.
    • (2012) Science , vol.335 , pp. 1596
    • Li, H.1    Opgenorth, P.H.2    Wernick, D.G.3    Rogers, S.4    Wu, T.Y.5    Higashide, W.6
  • 35
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665-1671. doi: 10.1007/s00253-009-2378-9.
    • (2010) Appl. Microbiol. Biotechnol , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 36
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • Logan, B. E., and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690. doi: 10.1126/science.1217412.
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 37
    • 84905011427 scopus 로고    scopus 로고
    • Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
    • Lohner, S. T., Deutzmann, J. S., Logan, B. E., Leigh, J., and Spormann, A. M. (2014). Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 8, 1673-1681. doi: 10.1038/ismej.2014.82.
    • (2014) ISME J , vol.8 , pp. 1673-1681
    • Lohner, S.T.1    Deutzmann, J.S.2    Logan, B.E.3    Leigh, J.4    Spormann, A.M.5
  • 38
    • 74549141982 scopus 로고    scopus 로고
    • Future shock from the microbe electric
    • Lovley, D. R. (2009). Future shock from the microbe electric. Microb. Biotechnol. 2, 139-141. doi: 10.1111/j.1751-7915.2009.00090_9.x.
    • (2009) Microb. Biotechnol , vol.2 , pp. 139-141
    • Lovley, D.R.1
  • 39
    • 82555168002 scopus 로고    scopus 로고
    • Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
    • Lovley, D. R. (2011). Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 4, 4896-4906. doi: 10.1039/C1ee02229f.
    • (2011) Energy Environ. Sci , vol.4 , pp. 4896-4906
    • Lovley, D.R.1
  • 40
    • 84870016648 scopus 로고    scopus 로고
    • Electromicrobiology
    • Lovley, D. R. (2012). Electromicrobiology. Annu. Rev. Microbiol. 66, 391-409. doi: 10.1146/annurev-micro-092611-150104.
    • (2012) Annu. Rev. Microbiol , vol.66 , pp. 391-409
    • Lovley, D.R.1
  • 41
    • 79958010826 scopus 로고    scopus 로고
    • A shift in the current: new applications and concepts for microbe-electrode electron exchange
    • Lovley, D. R., and Nevin, K. P. (2011). A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr. Opin. Biotechnol. 22, 441-448. doi: 10.1016/j.copbio.2011.01.009.
    • (2011) Curr. Opin. Biotechnol , vol.22 , pp. 441-448
    • Lovley, D.R.1    Nevin, K.P.2
  • 42
    • 84878652242 scopus 로고    scopus 로고
    • Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
    • Lovley, D. R., and Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385-390. doi: 10.1016/j.copbio.2013.02.012.
    • (2013) Curr. Opin. Biotechnol , vol.24 , pp. 385-390
    • Lovley, D.R.1    Nevin, K.P.2
  • 44
    • 84861842701 scopus 로고    scopus 로고
    • Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics
    • Malvankar, N. S., and Lovley, D. R. (2012). Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5, 1039-1046. doi: 10.1002/cssc.201100733.
    • (2012) ChemSusChem , vol.5 , pp. 1039-1046
    • Malvankar, N.S.1    Lovley, D.R.2
  • 45
    • 84926177674 scopus 로고    scopus 로고
    • Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy
    • Malvankar, N. S., Yalcin, S. E., Tuominen, M. T., and Lovley, D. R. (2014). Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotechnol. 9, 1012-1017. doi: 10.1038/nnano.2014.236.
    • (2014) Nat. Nanotechnol , vol.9 , pp. 1012-1017
    • Malvankar, N.S.1    Yalcin, S.E.2    Tuominen, M.T.3    Lovley, D.R.4
  • 46
    • 84870769198 scopus 로고    scopus 로고
    • Electrosynthesis of commodity chemicals by an autotrophic microbial community
    • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78, 8412-8420. doi: 10.1128/AEM.02401-12.
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 8412-8420
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 47
    • 84878648156 scopus 로고    scopus 로고
    • Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
    • Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2013). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 47, 6023-6029. doi: 10.1021/es400341b.
    • (2013) Environ. Sci. Technol , vol.47 , pp. 6023-6029
    • Marshall, C.W.1    Ross, D.E.2    Fichot, E.B.3    Norman, R.S.4    May, H.D.5
  • 48
    • 0033588790 scopus 로고    scopus 로고
    • Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III)
    • Matsumoto, N., Nakasono, S., Ohmura, N., and Saiki, H. (1999). Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III). Biotechnol. Bioeng. 64, 716-721. doi: 10.1002/(SICI)1097-0290(19990920)64:6<716::AID-BIT11>3.0.CO;2-9.
    • (1999) Biotechnol. Bioeng , vol.64 , pp. 716-721
    • Matsumoto, N.1    Nakasono, S.2    Ohmura, N.3    Saiki, H.4
  • 49
    • 0034694206 scopus 로고    scopus 로고
    • High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis
    • Matsumoto, N., Yoshinaga, H., Ohmura, N., Ando, A., and Saiki, H. (2000). High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis. Biotechnol. Bioeng. 70, 464-466. doi: 10.1002/1097-0290(20001120)70:4<464::AID-BIT12>3.0.CO;2-A.
    • (2000) Biotechnol. Bioeng , vol.70 , pp. 464-466
    • Matsumoto, N.1    Yoshinaga, H.2    Ohmura, N.3    Ando, A.4    Saiki, H.5
  • 50
    • 0001375592 scopus 로고
    • Sporomusa, a new genus of gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov and Sporomusa ovata spec. nov. Arch
    • Möller, B., Ossmer, R., Howard, B. H., Gottschalk, G., and Hippe, H. (1984). Sporomusa, a new genus of gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov and Sporomusa ovata spec. nov. Arch. Microbiol. 139, 388-396. doi: 10.1007/Bf00408385.
    • (1984) Microbiol , vol.139 , pp. 388-396
    • Möller, B.1    Ossmer, R.2    Howard, B.H.3    Gottschalk, G.4    Hippe, H.5
  • 51
    • 0031171323 scopus 로고    scopus 로고
    • Electrochemical cultivation of Thiobacillus ferrooxidans by potential control
    • Nakasono, S., Matsumoto, N., and Saiki, H. (1997). Electrochemical cultivation of Thiobacillus ferrooxidans by potential control. Bioelectrochem. Bioenerg. 43, 61-66. doi: 10.1016/S0302-4598(97)00001-9.
    • (1997) Bioelectrochem. Bioenerg , vol.43 , pp. 61-66
    • Nakasono, S.1    Matsumoto, N.2    Saiki, H.3
  • 52
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., et al. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882-2886. doi: 10.1128/AEM.02642-10.
    • (2011) Appl. Environ. Microbiol , vol.77 , pp. 2882-2886
    • Nevin, K.P.1    Hensley, S.A.2    Franks, A.E.3    Summers, Z.M.4    Ou, J.5    Woodard, T.L.6
  • 53
    • 78650173757 scopus 로고    scopus 로고
    • Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
    • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103-10. doi: 10.1128/mBio.00103-10.
    • (2010) mBio , vol.1
    • Nevin, K.P.1    Woodard, T.L.2    Franks, A.E.3    Summers, Z.M.4    Lovley, D.R.5
  • 54
    • 84881404831 scopus 로고    scopus 로고
    • Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
    • Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D. R., and Russell, T. P. (2013). Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15, 14290-14294. doi: 10.1039/c3cp52697f.
    • (2013) Phys. Chem. Chem. Phys , vol.15 , pp. 14290-14294
    • Nie, H.1    Zhang, T.2    Cui, M.3    Lu, H.4    Lovley, D.R.5    Russell, T.P.6
  • 55
    • 0033014983 scopus 로고    scopus 로고
    • Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
    • Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K., and Zeikus, J. G. (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65, 2912-2917.
    • (1999) Appl. Environ. Microbiol , vol.65 , pp. 2912-2917
    • Park, D.H.1    Laivenieks, M.2    Guettler, M.V.3    Jain, M.K.4    Zeikus, J.G.5
  • 56
    • 84870791628 scopus 로고    scopus 로고
    • Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
    • Patil, S. A., Hägerhäll, C., and Gorton, L. (2012). Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal. Rev. 4, 159-192. doi: 10.1007/s12566-012-0033-x.
    • (2012) Bioanal. Rev , vol.4 , pp. 159-192
    • Patil, S.A.1    Hägerhäll, C.2    Gorton, L.3
  • 57
    • 84866148210 scopus 로고    scopus 로고
    • Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
    • Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J. Y., and Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 78, 5212-5219. doi: 10.1128/AEM.00480-12.
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 5212-5219
    • Pisciotta, J.M.1    Zaybak, Z.2    Call, D.F.3    Nam, J.Y.4    Logan, B.E.5
  • 58
    • 84998780445 scopus 로고    scopus 로고
    • First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662
    • Poehlein, A., Gottschalk, G., and Daniel, R. (2013). First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662. Genome Announc. 1, e00734-13. doi: 10.1128/genomeA.00734-13.
    • (2013) Genome Announc , vol.1
    • Poehlein, A.1    Gottschalk, G.2    Daniel, R.3
  • 59
    • 79957982062 scopus 로고    scopus 로고
    • Metabolic and practical considerations on microbial electrosynthesis
    • Rabaey, K., Girguis, P., and Nielsen, L. K. (2011). Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol. 22, 371-377. doi: 10.1016/j.copbio.2011.01.010.
    • (2011) Curr. Opin. Biotechnol , vol.22 , pp. 371-377
    • Rabaey, K.1    Girguis, P.2    Nielsen, L.K.3
  • 60
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis-revisiting the electrical route for microbial production
    • Rabaey, K., and Rozendal, R. A. (2010). Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706-716. doi: 10.1038/nrmicro2422.
    • (2010) Nat. Rev. Microbiol , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 61
    • 54949153045 scopus 로고    scopus 로고
    • Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation
    • Ragsdale, S. W., and Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873-1898. doi: 10.1016/j.bbapap.2008.08.012.
    • (2008) Biochim. Biophys. Acta , vol.1784 , pp. 1873-1898
    • Ragsdale, S.W.1    Pierce, E.2
  • 62
  • 63
    • 84927517075 scopus 로고    scopus 로고
    • Microbial electroreduction: screening for new cathodic biocatalysts
    • Rodrigues, T. D., and Rosenbaum, M. A. (2014). Microbial electroreduction: screening for new cathodic biocatalysts. Chemelectrochem 1, 1916-1922. doi: 10.1002/celc.201402239.
    • (2014) Chemelectrochem , vol.1 , pp. 1916-1922
    • Rodrigues, T.D.1    Rosenbaum, M.A.2
  • 64
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
    • Rosenbaum, M., Aulenta, F., Villano, M., and Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324-333. doi: 10.1016/j.biortech.2010.07.008.
    • (2011) Bioresour. Technol , vol.102 , pp. 324-333
    • Rosenbaum, M.1    Aulenta, F.2    Villano, M.3    Angenent, L.T.4
  • 65
    • 84895072628 scopus 로고    scopus 로고
    • Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives
    • Rosenbaum, M. A., and Franks, A. E. (2014). Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl. Microbiol. Biotechnol. 98, 509-518. doi: 10.1007/s00253-013-5396-6.
    • (2014) Appl. Microbiol. Biotechnol , vol.98 , pp. 509-518
    • Rosenbaum, M.A.1    Franks, A.E.2
  • 66
    • 79551652545 scopus 로고    scopus 로고
    • Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism
    • Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., and Bond, D. R. (2011). Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE 6:e16649. doi: 10.1371/journal.pone.0016649.
    • (2011) PLoS ONE , vol.6
    • Ross, D.E.1    Flynn, J.M.2    Baron, D.B.3    Gralnick, J.A.4    Bond, D.R.5
  • 68
    • 84871574438 scopus 로고    scopus 로고
    • Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
    • Soussan, L., Riess, J., Erable, B., Delia, M. L., and Bergel, A. (2013). Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochem. Commun. 28, 27-30. doi: 10.1016/j.elecom.2012.11.033.
    • (2013) Electrochem. Commun , vol.28 , pp. 27-30
    • Soussan, L.1    Riess, J.2    Erable, B.3    Delia, M.L.4    Bergel, A.5
  • 69
    • 84855754203 scopus 로고    scopus 로고
    • Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms
    • Speers, A. M., and Reguera, G. (2012). Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Appl. Environ. Microbiol. 78, 437-444. doi: 10.1128/AEM.06782-11.
    • (2012) Appl. Environ. Microbiol , vol.78 , pp. 437-444
    • Speers, A.M.1    Reguera, G.2
  • 70
    • 78650170320 scopus 로고    scopus 로고
    • Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
    • Strycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., et al. (2011). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142-150. doi: 10.1016/j.bioelechem.2010.07.005.
    • (2011) Bioelectrochemistry , vol.80 , pp. 142-150
    • Strycharz, S.M.1    Glaven, R.H.2    Coppi, M.V.3    Gannon, S.M.4    Perpetua, L.A.5    Liu, A.6
  • 71
    • 84874589923 scopus 로고    scopus 로고
    • Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes
    • Summers, Z. M., Gralnick, J. A., and Bond, D. R. (2013). Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4, e00420-e00412. doi: 10.1128/mBio.00420-12.
    • (2013) mBio , vol.4
    • Summers, Z.M.1    Gralnick, J.A.2    Bond, D.R.3
  • 72
    • 84920251610 scopus 로고    scopus 로고
    • Electroactive bacteria-molecular mechanisms and genetic tools
    • Sydow, A., Krieg, T., Mayer, F., Schrader, J., and Holtmann, D. (2014). Electroactive bacteria-molecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol. 98, 8481-8495. doi: 10.1007/s00253-014-6005-z.
    • (2014) Appl. Microbiol. Biotechnol , vol.98 , pp. 8481-8495
    • Sydow, A.1    Krieg, T.2    Mayer, F.3    Schrader, J.4    Holtmann, D.5
  • 73
    • 84878861361 scopus 로고    scopus 로고
    • A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella
    • Thomas, A. W., Garner, L. E., Nevin, K. P., Woodard, T. L., Franks, A. E., Lovley, D. R., et al. (2013). A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella. Energy Environ. Sci. 6, 1761-1765. doi: 10.1039/C3ee00071k.
    • (2013) Energy Environ. Sci , vol.6 , pp. 1761-1765
    • Thomas, A.W.1    Garner, L.E.2    Nevin, K.P.3    Woodard, T.L.4    Franks, A.E.5    Lovley, D.R.6
  • 74
    • 84856710418 scopus 로고    scopus 로고
    • A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide
    • Tremblay, P. L., Aklujkar, M., Leang, C., Nevin, K. P., and Lovley, D. (2012). A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ. Microbiol. Rep. 4, 82-88. doi: 10.1111/j.1758-2229.2011.00305.x.
    • (2012) Environ. Microbiol. Rep , vol.4 , pp. 82-88
    • Tremblay, P.L.1    Aklujkar, M.2    Leang, C.3    Nevin, K.P.4    Lovley, D.5
  • 75
    • 84874639721 scopus 로고    scopus 로고
    • The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth
    • Tremblay, P. L., Zhang, T., Dar, S. A., Leang, C., and Lovley, D. R. (2013). The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4, e00406-e00412. doi: 10.1128/mBio.00406-12.
    • (2013) mBio , vol.4
    • Tremblay, P.L.1    Zhang, T.2    Dar, S.A.3    Leang, C.4    Lovley, D.R.5
  • 76
    • 84908433337 scopus 로고    scopus 로고
    • Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
    • Ueki, T., Nevin, K. P., Woodard, T. L., and Lovley, D. R. (2014). Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636-e01614. doi: 10.1128/mBio.01636-14.
    • (2014) mBio , vol.5
    • Ueki, T.1    Nevin, K.P.2    Woodard, T.L.3    Lovley, D.R.4
  • 78
    • 84880037294 scopus 로고    scopus 로고
    • Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens
    • Vargas, M., Malvankar, N. S., Tremblay, P. L., Leang, C., Smith, J. A., Patel, P., et al. (2013). Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4, e00105-e00113. doi: 10.1128/mBio.00105-13.
    • (2013) mBio , vol.4
    • Vargas, M.1    Malvankar, N.S.2    Tremblay, P.L.3    Leang, C.4    Smith, J.A.5    Patel, P.6
  • 79
    • 74649087256 scopus 로고    scopus 로고
    • Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
    • Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A., and Majone, M. (2010). Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085-3090. doi: 10.1016/j.biortech.2009.12.077.
    • (2010) Bioresour. Technol , vol.101 , pp. 3085-3090
    • Villano, M.1    Aulenta, F.2    Ciucci, C.3    Ferri, T.4    Giuliano, A.5    Majone, M.6
  • 80
    • 84888015677 scopus 로고    scopus 로고
    • A comprehensive review of microbial electrochemical systems as a platform technology
    • Wang, H., and Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796-1807. doi: 10.1016/j.biotechadv.2013.10.001.
    • (2013) Biotechnol. Adv , vol.31 , pp. 1796-1807
    • Wang, H.1    Ren, Z.J.2
  • 81
    • 84920720510 scopus 로고    scopus 로고
    • A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode
    • Wang, Z., Leary, D. H., Malanoski, A. P., Li, R. W., Hervey, W. J. T., Eddie, B. J., et al. (2015). A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl. Environ. Microbiol. 81, 699-712. doi: 10.1128/AEM.02947-14.
    • (2015) Appl. Environ. Microbiol , vol.81 , pp. 699-712
    • Wang, Z.1    Leary, D.H.2    Malanoski, A.P.3    Li, R.W.4    Hervey, W.J.T.5    Eddie, B.J.6
  • 82
    • 80052699260 scopus 로고    scopus 로고
    • Recent progress in electrodes for microbial fuel cells
    • Wei, J., Liang, P., and Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335-9344. doi: 10.1016/j.biortech.2011.07.019.
    • (2011) Bioresour. Technol , vol.102 , pp. 9335-9344
    • Wei, J.1    Liang, P.2    Huang, X.3
  • 83
    • 67650085480 scopus 로고    scopus 로고
    • Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
    • Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., et al. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 24, 3498-3503. doi: 10.1016/j.bios.2009.05.004.
    • (2009) Biosens. Bioelectron , vol.24 , pp. 3498-3503
    • Yi, H.1    Nevin, K.P.2    Kim, B.C.3    Franks, A.E.4    Klimes, A.5    Tender, L.M.6
  • 84
    • 84898942600 scopus 로고    scopus 로고
    • Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm
    • Yong, Y. C., Yu, Y. Y., Zhang, X., and Song, H. (2014). Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew. Chem. Int. Ed. Engl. 53, 4480-4483. doi: 10.1002/anie.201400463.
    • (2014) Angew. Chem. Int. Ed. Engl , vol.53 , pp. 4480-4483
    • Yong, Y.C.1    Yu, Y.Y.2    Zhang, X.3    Song, H.4
  • 85
    • 84888853961 scopus 로고    scopus 로고
    • Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems
    • Zaybak, Z., Pisciotta, J. M., Tokash, J. C., and Logan, B. E. (2013). Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J. Biotechnol. 168, 478-485. doi: 10.1016/j.jbiotec.2013.10.001.
    • (2013) J. Biotechnol , vol.168 , pp. 478-485
    • Zaybak, Z.1    Pisciotta, J.M.2    Tokash, J.C.3    Logan, B.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.