-
1
-
-
84902596879
-
Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
-
Andersen, S. J., Hennebel, T., Gildemyn, S., Coma, M., Desloover, J., Berton, J., et al. (2014). Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48, 7135-7142. doi: 10.1021/es500483w.
-
(2014)
Environ. Sci. Technol
, vol.48
, pp. 7135-7142
-
-
Andersen, S.J.1
Hennebel, T.2
Gildemyn, S.3
Coma, M.4
Desloover, J.5
Berton, J.6
-
2
-
-
84896905548
-
A Lactose-Inducible system for metabolic engineering of Clostridium ljungdahlii
-
Banerjee, A., Leang, C., Ueki, T., Nevin, K. P., and Lovley, D. R. (2014). A Lactose-Inducible system for metabolic engineering of Clostridium ljungdahlii. Appl. Environ. Microbiol. 80, 2410-2416. doi: 10.1128/AEM.03666-13.
-
(2014)
Appl. Environ. Microbiol
, vol.80
, pp. 2410-2416
-
-
Banerjee, A.1
Leang, C.2
Ueki, T.3
Nevin, K.P.4
Lovley, D.R.5
-
3
-
-
84908413509
-
Electron uptake by iron-oxidizing phototrophic bacteria
-
Bose, A., Gardel, E. J., Vidoudez, C., Parra, E. A., and Girguis, P. R. (2014). Electron uptake by iron-oxidizing phototrophic bacteria. Nat. Commun. 5, 3391. doi: 10.1038/ncomms4391.
-
(2014)
Nat. Commun
, vol.5
, pp. 3391
-
-
Bose, A.1
Gardel, E.J.2
Vidoudez, C.3
Parra, E.A.4
Girguis, P.R.5
-
4
-
-
70349108272
-
A new method for water desalination using microbial desalination cells
-
Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., et al. (2009). A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43, 7148-7152. doi: 10.1021/es901950j.
-
(2009)
Environ. Sci. Technol
, vol.43
, pp. 7148-7152
-
-
Cao, X.1
Huang, X.2
Liang, P.3
Xiao, K.4
Zhou, Y.5
Zhang, X.6
-
5
-
-
77956937778
-
Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen
-
Carbajosa, S., Malki, M., Caillard, R., Lopez, M. F., Palomares, F. J., Martin-Gago, J. A., et al. (2010). Electrochemical growth of Acidithiobacillus ferrooxidans on a graphite electrode for obtaining a biocathode for direct electrocatalytic reduction of oxygen. Biosens. Bioelectron. 26, 877-880. doi: 10.1016/j.bios.2010.07.037.
-
(2010)
Biosens. Bioelectron
, vol.26
, pp. 877-880
-
-
Carbajosa, S.1
Malki, M.2
Caillard, R.3
Lopez, M.F.4
Palomares, F.J.5
Martin-Gago, J.A.6
-
6
-
-
36749077086
-
Sustainable and efficient biohydrogen production via electrohydrogenesis
-
Cheng, S., and Logan, B. E. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 18871-18873. doi: 10.1073/pnas.0706379104.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A
, vol.104
, pp. 18871-18873
-
-
Cheng, S.1
Logan, B.E.2
-
7
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
Cheng, S., Xing, D., Call, D. F., and Logan, B. E. (2009). Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958. doi: 10.1021/es803531g.
-
(2009)
Environ. Sci. Technol
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
Xing, D.2
Call, D.F.3
Logan, B.E.4
-
8
-
-
2342553511
-
Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens
-
Coppi, M. V., O'Neil, R. A., and Lovley, D. R. (2004). Identification of an uptake hydrogenase required for hydrogen-dependent reduction of Fe(III) and other electron acceptors by Geobacter sulfurreducens. J. Bacteriol. 186, 3022-3028. doi: 10.1128/JB.186.10.3022-3028.2004.
-
(2004)
J. Bacteriol
, vol.186
, pp. 3022-3028
-
-
Coppi, M.V.1
O'Neil, R.A.2
Lovley, D.R.3
-
9
-
-
84969234067
-
Towards electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris
-
Doud, D. F. R., and Angenent, L. T. (2014). Towards electrosynthesis with uncoupled extracellular electron uptake and metabolic growth: enhancing current uptake with Rhodopseudomonas palustris. Environ. Sci. Technol. Lett. 1, 351-355. doi: 10.1021/ez500244n.
-
(2014)
Environ. Sci. Technol. Lett
, vol.1
, pp. 351-355
-
-
Doud, D.F.R.1
Angenent, L.T.2
-
10
-
-
0030838596
-
Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?
-
Drake, H. L., Daniel, S. L., Kusel, K., Matthies, C., Kuhner, C., and Braus-Stromeyer, S. (1997). Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities? Biofactors 6, 13-24. doi: 10.1002/biof.5520060103.
-
(1997)
Biofactors
, vol.6
, pp. 13-24
-
-
Drake, H.L.1
Daniel, S.L.2
Kusel, K.3
Matthies, C.4
Kuhner, C.5
Braus-Stromeyer, S.6
-
11
-
-
41349108042
-
Old acetogens, new light
-
Drake, H. L., Gossner, A. S., and Daniel, S. L. (2008). Old acetogens, new light. Ann. N. Y. Acad. Sci. 1125, 100-128. doi: 10.1196/annals.1419.016.
-
(2008)
Ann. N. Y. Acad. Sci
, vol.1125
, pp. 100-128
-
-
Drake, H.L.1
Gossner, A.S.2
Daniel, S.L.3
-
12
-
-
37349062455
-
Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
-
Dumas, C., Basseguy, R., and Bergel, A. (2008). Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim. Acta 53, 2494-2500. doi: 10.1016/j.electacta.2007.10.018.
-
(2008)
Electrochim. Acta
, vol.53
, pp. 2494-2500
-
-
Dumas, C.1
Basseguy, R.2
Bergel, A.3
-
13
-
-
84874116531
-
Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals
-
Fast, A. G., and Papousakis, E. T. (2012). Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr. Opin. Chem. Eng. 1, 380-395. doi: 10.1016/j.coche.2012.07.005.
-
(2012)
Curr. Opin. Chem. Eng
, vol.1
, pp. 380-395
-
-
Fast, A.G.1
Papousakis, E.T.2
-
14
-
-
84901339219
-
Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens
-
Feist, A. M., Nagarajan, H., Rotaru, A. E., Tremblay, P. L., Zhang, T., Nevin, K. P., et al. (2014). Constraint-based modeling of carbon fixation and the energetics of electron transfer in Geobacter metallireducens. PLoS Comput. Biol. 10:e1003575. doi: 10.1371/journal.pcbi.1003575PCOMPBIOL-D-13-01735.
-
(2014)
PLoS Comput. Biol
, vol.10
-
-
Feist, A.M.1
Nagarajan, H.2
Rotaru, A.E.3
Tremblay, P.L.4
Zhang, T.5
Nevin, K.P.6
-
15
-
-
84871763919
-
Sulfide-driven microbial electrosynthesis
-
Gong, Y., Ebrahim, A., Feist, A. M., Embree, M., Zhang, T., Lovley, D., et al. (2013). Sulfide-driven microbial electrosynthesis. Environ. Sci. Technol. 47, 568-573. doi: 10.1021/es303837j.
-
(2013)
Environ. Sci. Technol
, vol.47
, pp. 568-573
-
-
Gong, Y.1
Ebrahim, A.2
Feist, A.M.3
Embree, M.4
Zhang, T.5
Lovley, D.6
-
16
-
-
84874305845
-
Solar cell efficiency tables (version 45)
-
Green, M. A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E. D. (2014). Solar cell efficiency tables (version 45). Prog. Photovolt. Res. Appl. 23, 1-9. doi: 10.1002/pip.2573.
-
(2014)
Prog. Photovolt. Res. Appl
, vol.23
, pp. 1-9
-
-
Green, M.A.1
Emery, K.2
Hishikawa, Y.3
Warta, W.4
Dunlop, E.D.5
-
17
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
Gregory, K. B., Bond, D. R., and Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596-604. doi: 10.1111/j.1462-2920.2004.00593.x.
-
(2004)
Environ. Microbiol
, vol.6
, pp. 596-604
-
-
Gregory, K.B.1
Bond, D.R.2
Lovley, D.R.3
-
18
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
Gregory, K. B., and Lovley, D. R. (2005). Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947. doi: 10.1021/es050457e.
-
(2005)
Environ. Sci. Technol
, vol.39
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
19
-
-
84905169324
-
Recent advances in microbial electrocatalysis
-
Hallenbeck, P. C., Grogger, M., and Veverka, D. (2014). Recent advances in microbial electrocatalysis. Electrocatalysis 5, 319-329. doi: 10.1007/s12678-014-0198-x.
-
(2014)
Electrocatalysis
, vol.5
, pp. 319-329
-
-
Hallenbeck, P.C.1
Grogger, M.2
Veverka, D.3
-
20
-
-
84901927152
-
Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells
-
Huang, L. P., Jiang, L., Wang, Q., Quan, X., Yang, J., and Chen, L. (2014). Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chem. Eng. J. 253, 281-290. doi: 10.1016/j.cej.2014.05.080.
-
(2014)
Chem. Eng. J
, vol.253
, pp. 281-290
-
-
Huang, L.P.1
Jiang, L.2
Wang, Q.3
Quan, X.4
Yang, J.5
Chen, L.6
-
21
-
-
84899454055
-
Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system
-
Jiang, Y., Su, M., and Li, D. (2014). Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system. Appl. Biochem. Biotechnol. 172, 2720-2731. doi: 10.1007/s12010-013-0718-9.
-
(2014)
Appl. Biochem. Biotechnol
, vol.172
, pp. 2720-2731
-
-
Jiang, Y.1
Su, M.2
Li, D.3
-
22
-
-
84874661053
-
Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate
-
Jiang, Y., Su, M., Zhang, Y., Zhan, G., Tao, Y., and Li, D. (2013). Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydrogen. Ener. 38, 3497-3502. doi:10.1016/j.ijhydene.2012.12.107.
-
(2013)
Int. J. Hydrogen. Ener
, vol.38
, pp. 3497-3502
-
-
Jiang, Y.1
Su, M.2
Zhang, Y.3
Zhan, G.4
Tao, Y.5
Li, D.6
-
23
-
-
84904753488
-
A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
-
Jourdin, L., Freguia, S., Donose, B. C., Chen, J., Wallace, G. G., Keller, J., et al. (2014). A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2, 13093-13102. doi: 10.1039/c4ta03101f.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13093-13102
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Chen, J.4
Wallace, G.G.5
Keller, J.6
-
24
-
-
84901612043
-
Utilization of surplus electricity from wind power for dynamic biogas upgrading: Nothern Germany case study
-
Jürgensen, L., Ehimen, E. A., Born, J., and Holm-Nielsen, J. B. (2014). Utilization of surplus electricity from wind power for dynamic biogas upgrading: Nothern Germany case study. Biomass Bioenergy 66, 126-132. doi: 10.1016/j.biombioe.2014.02.032.
-
(2014)
Biomass Bioenergy
, vol.66
, pp. 126-132
-
-
Jürgensen, L.1
Ehimen, E.A.2
Born, J.3
Holm-Nielsen, J.B.4
-
25
-
-
84917694522
-
Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor
-
Kato, S., Yumoto, I., and Kamagata, Y. (2015). Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl. Environ. Microbiol. 81, 67-73. doi: 10.1128/AEM.02767-14.
-
(2015)
Appl. Environ. Microbiol
, vol.81
, pp. 67-73
-
-
Kato, S.1
Yumoto, I.2
Kamagata, Y.3
-
26
-
-
84866556635
-
Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell
-
Khunjar, W. O., Sahin, A., West, A. C., Chandran, K., and Banta, S. (2012). Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS ONE 7:e44846. doi: 10.1371/journal.pone.0044846.
-
(2012)
PLoS ONE
, vol.7
-
-
Khunjar, W.O.1
Sahin, A.2
West, A.C.3
Chandran, K.4
Banta, S.5
-
27
-
-
0013769829
-
Method for electrolysis of culture medium to increase growth of the sulfur-oxidizing iron bacterium Ferrobacillus sulfooxidans
-
Kinsel, N. A., and Umbreit, W. W. (1964). Method for electrolysis of culture medium to increase growth of the sulfur-oxidizing iron bacterium Ferrobacillus sulfooxidans. J. Bacteriol. 87, 1243-1244.
-
(1964)
J. Bacteriol
, vol.87
, pp. 1243-1244
-
-
Kinsel, N.A.1
Umbreit, W.W.2
-
28
-
-
84878193965
-
Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor
-
Kobayashi, H., Saito, N., Fu, Q., Kawaguchi, H., Vilcaez, J., Wakayama, T., et al. (2013). Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J. Biosci. Bioeng. 116, 114-117. doi: 10.1016/j.jbiosc.2013.01.001.
-
(2013)
J. Biosci. Bioeng
, vol.116
, pp. 114-117
-
-
Kobayashi, H.1
Saito, N.2
Fu, Q.3
Kawaguchi, H.4
Vilcaez, J.5
Wakayama, T.6
-
29
-
-
77955610491
-
Clostridium ljungdahlii represents a microbial production platform based on syngas
-
Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., et al. (2010). Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. U.S.A. 107, 13087-13092. doi: 10.1073/pnas.1004716107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 13087-13092
-
-
Köpke, M.1
Held, C.2
Hujer, S.3
Liesegang, H.4
Wiezer, A.5
Wollherr, A.6
-
30
-
-
84923930357
-
Identifying target processes for microbial electrosynthesis by elementary mode analysis
-
Kracke, F., and Krömer, J. O. (2014). Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15:6590. doi: 10.1186/s12859-014-0410-2.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 6590
-
-
Kracke, F.1
Krömer, J.O.2
-
31
-
-
84918517242
-
Reactor concepts for bioelectrochemical syntheses and energy conversion
-
Krieg, T., Sydow, A., Schroder, U., Schrader, J., and Holtmann, D. (2014). Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32, 645-655. doi: 10.1016/j.tibtech.2014.10.004.
-
(2014)
Trends Biotechnol
, vol.32
, pp. 645-655
-
-
Krieg, T.1
Sydow, A.2
Schroder, U.3
Schrader, J.4
Holtmann, D.5
-
32
-
-
84908021230
-
Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
-
LaBelle, E. V., Marshall, C. W., Gilbert, J. A., and May, H. D. (2014). Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS ONE 9:e109935. doi: 10.1371/journal.pone.0109935.
-
(2014)
PLoS ONE
, vol.9
-
-
LaBelle, E.V.1
Marshall, C.W.2
Gilbert, J.A.3
May, H.D.4
-
33
-
-
84874738185
-
A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen
-
Leang, C., Ueki, T., Nevin, K. P., and Lovley, D. R. (2013). A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl. Environ. Microbiol. 79, 1102-1109. doi: 10.1128/AEM.02891-12.
-
(2013)
Appl. Environ. Microbiol
, vol.79
, pp. 1102-1109
-
-
Leang, C.1
Ueki, T.2
Nevin, K.P.3
Lovley, D.R.4
-
34
-
-
84859111827
-
Integrated electromicrobial conversion of CO2 to higher alcohols
-
Li, H., Opgenorth, P. H., Wernick, D. G., Rogers, S., Wu, T. Y., Higashide, W., et al. (2012). Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596. doi: 10.1126/science.1217643.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wernick, D.G.3
Rogers, S.4
Wu, T.Y.5
Higashide, W.6
-
35
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85, 1665-1671. doi: 10.1007/s00253-009-2378-9.
-
(2010)
Appl. Microbiol. Biotechnol
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
36
-
-
84864831407
-
Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
-
Logan, B. E., and Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690. doi: 10.1126/science.1217412.
-
(2012)
Science
, vol.337
, pp. 686-690
-
-
Logan, B.E.1
Rabaey, K.2
-
37
-
-
84905011427
-
Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis
-
Lohner, S. T., Deutzmann, J. S., Logan, B. E., Leigh, J., and Spormann, A. M. (2014). Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J. 8, 1673-1681. doi: 10.1038/ismej.2014.82.
-
(2014)
ISME J
, vol.8
, pp. 1673-1681
-
-
Lohner, S.T.1
Deutzmann, J.S.2
Logan, B.E.3
Leigh, J.4
Spormann, A.M.5
-
38
-
-
74549141982
-
Future shock from the microbe electric
-
Lovley, D. R. (2009). Future shock from the microbe electric. Microb. Biotechnol. 2, 139-141. doi: 10.1111/j.1751-7915.2009.00090_9.x.
-
(2009)
Microb. Biotechnol
, vol.2
, pp. 139-141
-
-
Lovley, D.R.1
-
39
-
-
82555168002
-
Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
-
Lovley, D. R. (2011). Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ. Sci. 4, 4896-4906. doi: 10.1039/C1ee02229f.
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 4896-4906
-
-
Lovley, D.R.1
-
40
-
-
84870016648
-
Electromicrobiology
-
Lovley, D. R. (2012). Electromicrobiology. Annu. Rev. Microbiol. 66, 391-409. doi: 10.1146/annurev-micro-092611-150104.
-
(2012)
Annu. Rev. Microbiol
, vol.66
, pp. 391-409
-
-
Lovley, D.R.1
-
41
-
-
79958010826
-
A shift in the current: new applications and concepts for microbe-electrode electron exchange
-
Lovley, D. R., and Nevin, K. P. (2011). A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr. Opin. Biotechnol. 22, 441-448. doi: 10.1016/j.copbio.2011.01.009.
-
(2011)
Curr. Opin. Biotechnol
, vol.22
, pp. 441-448
-
-
Lovley, D.R.1
Nevin, K.P.2
-
42
-
-
84878652242
-
Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity
-
Lovley, D. R., and Nevin, K. P. (2013). Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr. Opin. Biotechnol. 24, 385-390. doi: 10.1016/j.copbio.2013.02.012.
-
(2013)
Curr. Opin. Biotechnol
, vol.24
, pp. 385-390
-
-
Lovley, D.R.1
Nevin, K.P.2
-
44
-
-
84861842701
-
Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics
-
Malvankar, N. S., and Lovley, D. R. (2012). Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5, 1039-1046. doi: 10.1002/cssc.201100733.
-
(2012)
ChemSusChem
, vol.5
, pp. 1039-1046
-
-
Malvankar, N.S.1
Lovley, D.R.2
-
45
-
-
84926177674
-
Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy
-
Malvankar, N. S., Yalcin, S. E., Tuominen, M. T., and Lovley, D. R. (2014). Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat. Nanotechnol. 9, 1012-1017. doi: 10.1038/nnano.2014.236.
-
(2014)
Nat. Nanotechnol
, vol.9
, pp. 1012-1017
-
-
Malvankar, N.S.1
Yalcin, S.E.2
Tuominen, M.T.3
Lovley, D.R.4
-
46
-
-
84870769198
-
Electrosynthesis of commodity chemicals by an autotrophic microbial community
-
Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2012). Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78, 8412-8420. doi: 10.1128/AEM.02401-12.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 8412-8420
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
47
-
-
84878648156
-
Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes
-
Marshall, C. W., Ross, D. E., Fichot, E. B., Norman, R. S., and May, H. D. (2013). Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes. Environ. Sci. Technol. 47, 6023-6029. doi: 10.1021/es400341b.
-
(2013)
Environ. Sci. Technol
, vol.47
, pp. 6023-6029
-
-
Marshall, C.W.1
Ross, D.E.2
Fichot, E.B.3
Norman, R.S.4
May, H.D.5
-
48
-
-
0033588790
-
Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III)
-
Matsumoto, N., Nakasono, S., Ohmura, N., and Saiki, H. (1999). Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III). Biotechnol. Bioeng. 64, 716-721. doi: 10.1002/(SICI)1097-0290(19990920)64:6<716::AID-BIT11>3.0.CO;2-9.
-
(1999)
Biotechnol. Bioeng
, vol.64
, pp. 716-721
-
-
Matsumoto, N.1
Nakasono, S.2
Ohmura, N.3
Saiki, H.4
-
49
-
-
0034694206
-
High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis
-
Matsumoto, N., Yoshinaga, H., Ohmura, N., Ando, A., and Saiki, H. (2000). High density cultivation of two strains of iron-oxidizing bacteria through reduction of ferric iron by intermittent electrolysis. Biotechnol. Bioeng. 70, 464-466. doi: 10.1002/1097-0290(20001120)70:4<464::AID-BIT12>3.0.CO;2-A.
-
(2000)
Biotechnol. Bioeng
, vol.70
, pp. 464-466
-
-
Matsumoto, N.1
Yoshinaga, H.2
Ohmura, N.3
Ando, A.4
Saiki, H.5
-
50
-
-
0001375592
-
Sporomusa, a new genus of gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov and Sporomusa ovata spec. nov. Arch
-
Möller, B., Ossmer, R., Howard, B. H., Gottschalk, G., and Hippe, H. (1984). Sporomusa, a new genus of gram-negative anaerobic-bacteria including Sporomusa sphaeroides spec. nov and Sporomusa ovata spec. nov. Arch. Microbiol. 139, 388-396. doi: 10.1007/Bf00408385.
-
(1984)
Microbiol
, vol.139
, pp. 388-396
-
-
Möller, B.1
Ossmer, R.2
Howard, B.H.3
Gottschalk, G.4
Hippe, H.5
-
51
-
-
0031171323
-
Electrochemical cultivation of Thiobacillus ferrooxidans by potential control
-
Nakasono, S., Matsumoto, N., and Saiki, H. (1997). Electrochemical cultivation of Thiobacillus ferrooxidans by potential control. Bioelectrochem. Bioenerg. 43, 61-66. doi: 10.1016/S0302-4598(97)00001-9.
-
(1997)
Bioelectrochem. Bioenerg
, vol.43
, pp. 61-66
-
-
Nakasono, S.1
Matsumoto, N.2
Saiki, H.3
-
52
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin, K. P., Hensley, S. A., Franks, A. E., Summers, Z. M., Ou, J., Woodard, T. L., et al. (2011). Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77, 2882-2886. doi: 10.1128/AEM.02642-10.
-
(2011)
Appl. Environ. Microbiol
, vol.77
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
-
53
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010). Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1, e00103-10. doi: 10.1128/mBio.00103-10.
-
(2010)
mBio
, vol.1
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
54
-
-
84881404831
-
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
-
Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D. R., and Russell, T. P. (2013). Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15, 14290-14294. doi: 10.1039/c3cp52697f.
-
(2013)
Phys. Chem. Chem. Phys
, vol.15
, pp. 14290-14294
-
-
Nie, H.1
Zhang, T.2
Cui, M.3
Lu, H.4
Lovley, D.R.5
Russell, T.P.6
-
55
-
-
0033014983
-
Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
-
Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K., and Zeikus, J. G. (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65, 2912-2917.
-
(1999)
Appl. Environ. Microbiol
, vol.65
, pp. 2912-2917
-
-
Park, D.H.1
Laivenieks, M.2
Guettler, M.V.3
Jain, M.K.4
Zeikus, J.G.5
-
56
-
-
84870791628
-
Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
-
Patil, S. A., Hägerhäll, C., and Gorton, L. (2012). Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal. Rev. 4, 159-192. doi: 10.1007/s12566-012-0033-x.
-
(2012)
Bioanal. Rev
, vol.4
, pp. 159-192
-
-
Patil, S.A.1
Hägerhäll, C.2
Gorton, L.3
-
57
-
-
84866148210
-
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes
-
Pisciotta, J. M., Zaybak, Z., Call, D. F., Nam, J. Y., and Logan, B. E. (2012). Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl. Environ. Microbiol. 78, 5212-5219. doi: 10.1128/AEM.00480-12.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 5212-5219
-
-
Pisciotta, J.M.1
Zaybak, Z.2
Call, D.F.3
Nam, J.Y.4
Logan, B.E.5
-
58
-
-
84998780445
-
First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662
-
Poehlein, A., Gottschalk, G., and Daniel, R. (2013). First insights into the genome of the gram-negative, endospore-forming organism Sporomusa ovata strain H1 DSM 2662. Genome Announc. 1, e00734-13. doi: 10.1128/genomeA.00734-13.
-
(2013)
Genome Announc
, vol.1
-
-
Poehlein, A.1
Gottschalk, G.2
Daniel, R.3
-
59
-
-
79957982062
-
Metabolic and practical considerations on microbial electrosynthesis
-
Rabaey, K., Girguis, P., and Nielsen, L. K. (2011). Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol. 22, 371-377. doi: 10.1016/j.copbio.2011.01.010.
-
(2011)
Curr. Opin. Biotechnol
, vol.22
, pp. 371-377
-
-
Rabaey, K.1
Girguis, P.2
Nielsen, L.K.3
-
60
-
-
77957147094
-
Microbial electrosynthesis-revisiting the electrical route for microbial production
-
Rabaey, K., and Rozendal, R. A. (2010). Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706-716. doi: 10.1038/nrmicro2422.
-
(2010)
Nat. Rev. Microbiol
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
61
-
-
54949153045
-
Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation
-
Ragsdale, S. W., and Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 1784, 1873-1898. doi: 10.1016/j.bbapap.2008.08.012.
-
(2008)
Biochim. Biophys. Acta
, vol.1784
, pp. 1873-1898
-
-
Ragsdale, S.W.1
Pierce, E.2
-
62
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
Reguera, G., Mccarthy, K. D., Mehta, T., Nicoll, J. S., Tuominen, M. T., and Lovley, D. R. (2005). Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1101. doi: 10.1038/nature03661.
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
Mccarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
63
-
-
84927517075
-
Microbial electroreduction: screening for new cathodic biocatalysts
-
Rodrigues, T. D., and Rosenbaum, M. A. (2014). Microbial electroreduction: screening for new cathodic biocatalysts. Chemelectrochem 1, 1916-1922. doi: 10.1002/celc.201402239.
-
(2014)
Chemelectrochem
, vol.1
, pp. 1916-1922
-
-
Rodrigues, T.D.1
Rosenbaum, M.A.2
-
64
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
-
Rosenbaum, M., Aulenta, F., Villano, M., and Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324-333. doi: 10.1016/j.biortech.2010.07.008.
-
(2011)
Bioresour. Technol
, vol.102
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
65
-
-
84895072628
-
Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives
-
Rosenbaum, M. A., and Franks, A. E. (2014). Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl. Microbiol. Biotechnol. 98, 509-518. doi: 10.1007/s00253-013-5396-6.
-
(2014)
Appl. Microbiol. Biotechnol
, vol.98
, pp. 509-518
-
-
Rosenbaum, M.A.1
Franks, A.E.2
-
66
-
-
79551652545
-
Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism
-
Ross, D. E., Flynn, J. M., Baron, D. B., Gralnick, J. A., and Bond, D. R. (2011). Towards electrosynthesis in Shewanella: energetics of reversing the mtr pathway for reductive metabolism. PLoS ONE 6:e16649. doi: 10.1371/journal.pone.0016649.
-
(2011)
PLoS ONE
, vol.6
-
-
Ross, D.E.1
Flynn, J.M.2
Baron, D.B.3
Gralnick, J.A.4
Bond, D.R.5
-
67
-
-
84863520275
-
Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1
-
Shi, L., Rosso, K. M., Clarke, T. A., Richardson, D. J., Zachara, J. M., and Fredrickson, J. K. (2012). Molecular underpinnings of Fe(III) oxide reduction by Shewanella oneidensis MR-1. Front. Microbiol. 3:50. doi: 10.3389/fmicb.2012.00050.
-
(2012)
Front. Microbiol
, vol.3
, pp. 50
-
-
Shi, L.1
Rosso, K.M.2
Clarke, T.A.3
Richardson, D.J.4
Zachara, J.M.5
Fredrickson, J.K.6
-
68
-
-
84871574438
-
Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes
-
Soussan, L., Riess, J., Erable, B., Delia, M. L., and Bergel, A. (2013). Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes. Electrochem. Commun. 28, 27-30. doi: 10.1016/j.elecom.2012.11.033.
-
(2013)
Electrochem. Commun
, vol.28
, pp. 27-30
-
-
Soussan, L.1
Riess, J.2
Erable, B.3
Delia, M.L.4
Bergel, A.5
-
69
-
-
84855754203
-
Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms
-
Speers, A. M., and Reguera, G. (2012). Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Appl. Environ. Microbiol. 78, 437-444. doi: 10.1128/AEM.06782-11.
-
(2012)
Appl. Environ. Microbiol
, vol.78
, pp. 437-444
-
-
Speers, A.M.1
Reguera, G.2
-
70
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
Strycharz, S. M., Glaven, R. H., Coppi, M. V., Gannon, S. M., Perpetua, L. A., Liu, A., et al. (2011). Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80, 142-150. doi: 10.1016/j.bioelechem.2010.07.005.
-
(2011)
Bioelectrochemistry
, vol.80
, pp. 142-150
-
-
Strycharz, S.M.1
Glaven, R.H.2
Coppi, M.V.3
Gannon, S.M.4
Perpetua, L.A.5
Liu, A.6
-
71
-
-
84874589923
-
Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes
-
Summers, Z. M., Gralnick, J. A., and Bond, D. R. (2013). Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4, e00420-e00412. doi: 10.1128/mBio.00420-12.
-
(2013)
mBio
, vol.4
-
-
Summers, Z.M.1
Gralnick, J.A.2
Bond, D.R.3
-
72
-
-
84920251610
-
Electroactive bacteria-molecular mechanisms and genetic tools
-
Sydow, A., Krieg, T., Mayer, F., Schrader, J., and Holtmann, D. (2014). Electroactive bacteria-molecular mechanisms and genetic tools. Appl. Microbiol. Biotechnol. 98, 8481-8495. doi: 10.1007/s00253-014-6005-z.
-
(2014)
Appl. Microbiol. Biotechnol
, vol.98
, pp. 8481-8495
-
-
Sydow, A.1
Krieg, T.2
Mayer, F.3
Schrader, J.4
Holtmann, D.5
-
73
-
-
84878861361
-
A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella
-
Thomas, A. W., Garner, L. E., Nevin, K. P., Woodard, T. L., Franks, A. E., Lovley, D. R., et al. (2013). A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella. Energy Environ. Sci. 6, 1761-1765. doi: 10.1039/C3ee00071k.
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 1761-1765
-
-
Thomas, A.W.1
Garner, L.E.2
Nevin, K.P.3
Woodard, T.L.4
Franks, A.E.5
Lovley, D.R.6
-
74
-
-
84856710418
-
A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide
-
Tremblay, P. L., Aklujkar, M., Leang, C., Nevin, K. P., and Lovley, D. (2012). A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ. Microbiol. Rep. 4, 82-88. doi: 10.1111/j.1758-2229.2011.00305.x.
-
(2012)
Environ. Microbiol. Rep
, vol.4
, pp. 82-88
-
-
Tremblay, P.L.1
Aklujkar, M.2
Leang, C.3
Nevin, K.P.4
Lovley, D.5
-
75
-
-
84874639721
-
The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth
-
Tremblay, P. L., Zhang, T., Dar, S. A., Leang, C., and Lovley, D. R. (2013). The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4, e00406-e00412. doi: 10.1128/mBio.00406-12.
-
(2013)
mBio
, vol.4
-
-
Tremblay, P.L.1
Zhang, T.2
Dar, S.A.3
Leang, C.4
Lovley, D.R.5
-
76
-
-
84908433337
-
Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii
-
Ueki, T., Nevin, K. P., Woodard, T. L., and Lovley, D. R. (2014). Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. mBio 5, e01636-e01614. doi: 10.1128/mBio.01636-14.
-
(2014)
mBio
, vol.5
-
-
Ueki, T.1
Nevin, K.P.2
Woodard, T.L.3
Lovley, D.R.4
-
77
-
-
84908006172
-
Anion-exchange membranes in electrochemical energy systems
-
Varcoe, J. R., Atanassov, P., Dekel, D. R., Herring, A. M., Hickner, M. A., Kohl, P. A., et al. (2014). Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135-3191. doi: 10.1039/C4ee01303d.
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 3135-3191
-
-
Varcoe, J.R.1
Atanassov, P.2
Dekel, D.R.3
Herring, A.M.4
Hickner, M.A.5
Kohl, P.A.6
-
78
-
-
84880037294
-
Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens
-
Vargas, M., Malvankar, N. S., Tremblay, P. L., Leang, C., Smith, J. A., Patel, P., et al. (2013). Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. mBio 4, e00105-e00113. doi: 10.1128/mBio.00105-13.
-
(2013)
mBio
, vol.4
-
-
Vargas, M.1
Malvankar, N.S.2
Tremblay, P.L.3
Leang, C.4
Smith, J.A.5
Patel, P.6
-
79
-
-
74649087256
-
Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
-
Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A., and Majone, M. (2010). Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085-3090. doi: 10.1016/j.biortech.2009.12.077.
-
(2010)
Bioresour. Technol
, vol.101
, pp. 3085-3090
-
-
Villano, M.1
Aulenta, F.2
Ciucci, C.3
Ferri, T.4
Giuliano, A.5
Majone, M.6
-
80
-
-
84888015677
-
A comprehensive review of microbial electrochemical systems as a platform technology
-
Wang, H., and Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol. Adv. 31, 1796-1807. doi: 10.1016/j.biotechadv.2013.10.001.
-
(2013)
Biotechnol. Adv
, vol.31
, pp. 1796-1807
-
-
Wang, H.1
Ren, Z.J.2
-
81
-
-
84920720510
-
A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode
-
Wang, Z., Leary, D. H., Malanoski, A. P., Li, R. W., Hervey, W. J. T., Eddie, B. J., et al. (2015). A previously uncharacterized, nonphotosynthetic member of the Chromatiaceae is the primary CO2-fixing constituent in a self-regenerating biocathode. Appl. Environ. Microbiol. 81, 699-712. doi: 10.1128/AEM.02947-14.
-
(2015)
Appl. Environ. Microbiol
, vol.81
, pp. 699-712
-
-
Wang, Z.1
Leary, D.H.2
Malanoski, A.P.3
Li, R.W.4
Hervey, W.J.T.5
Eddie, B.J.6
-
82
-
-
80052699260
-
Recent progress in electrodes for microbial fuel cells
-
Wei, J., Liang, P., and Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 102, 9335-9344. doi: 10.1016/j.biortech.2011.07.019.
-
(2011)
Bioresour. Technol
, vol.102
, pp. 9335-9344
-
-
Wei, J.1
Liang, P.2
Huang, X.3
-
83
-
-
67650085480
-
Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells
-
Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., et al. (2009). Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 24, 3498-3503. doi: 10.1016/j.bios.2009.05.004.
-
(2009)
Biosens. Bioelectron
, vol.24
, pp. 3498-3503
-
-
Yi, H.1
Nevin, K.P.2
Kim, B.C.3
Franks, A.E.4
Klimes, A.5
Tender, L.M.6
-
84
-
-
84898942600
-
Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm
-
Yong, Y. C., Yu, Y. Y., Zhang, X., and Song, H. (2014). Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm. Angew. Chem. Int. Ed. Engl. 53, 4480-4483. doi: 10.1002/anie.201400463.
-
(2014)
Angew. Chem. Int. Ed. Engl
, vol.53
, pp. 4480-4483
-
-
Yong, Y.C.1
Yu, Y.Y.2
Zhang, X.3
Song, H.4
-
85
-
-
84888853961
-
Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems
-
Zaybak, Z., Pisciotta, J. M., Tokash, J. C., and Logan, B. E. (2013). Enhanced start-up of anaerobic facultatively autotrophic biocathodes in bioelectrochemical systems. J. Biotechnol. 168, 478-485. doi: 10.1016/j.jbiotec.2013.10.001.
-
(2013)
J. Biotechnol
, vol.168
, pp. 478-485
-
-
Zaybak, Z.1
Pisciotta, J.M.2
Tokash, J.C.3
Logan, B.E.4
-
86
-
-
84871347686
-
Improved cathode materials for microbial electrosynthesis
-
Zhang, T., Nie, H. R., Bain, T. S., Lu, H. Y., Cui, M. M., Snoeyenbos-West, O. L., et al. (2013). Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6, 217-224. doi: 10.1039/C2ee23350a.
-
(2013)
Energy Environ. Sci
, vol.6
, pp. 217-224
-
-
Zhang, T.1
Nie, H.R.2
Bain, T.S.3
Lu, H.Y.4
Cui, M.M.5
Snoeyenbos-West, O.L.6
|