-
1
-
-
84954376354
-
Prostate cancer
-
Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, et al. Prostate cancer. Lancet 2016;387:70–82.
-
(2016)
Lancet
, vol.387
, pp. 70-82
-
-
Attard, G.1
Parker, C.2
Eeles, R.A.3
Schroder, F.4
Tomlins, S.A.5
Tannock, I.6
-
2
-
-
84949057888
-
Prevalence of prostate cancer clinical states and mortality in the united states: Estimates using a dynamic progression model
-
Scher HI, Solo K, Valant J, Todd MB, Mehra M. Prevalence of prostate cancer clinical states and mortality in the united states: estimates using a dynamic progression model. PLoS One 2015;10:e0139440.
-
(2015)
Plos One
, vol.10
-
-
Scher, H.I.1
Solo, K.2
Valant, J.3
Todd, M.B.4
Mehra, M.5
-
3
-
-
33644675811
-
Biology of progressive, castration-resistant prostate cancer: Directed therapies targeting the androgen-receptor signaling axis
-
Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005;23:8253–61.
-
(2005)
J Clin Oncol
, vol.23
, pp. 8253-8261
-
-
Scher, H.I.1
Sawyers, C.L.2
-
4
-
-
84948717393
-
Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer
-
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015;15:701–11.
-
(2015)
Nat Rev Cancer
, vol.15
, pp. 701-711
-
-
Watson, P.A.1
Arora, V.K.2
Sawyers, C.L.3
-
5
-
-
84957623685
-
Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer
-
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016;22:298–305.
-
(2016)
Nat Med
, vol.22
, pp. 298-305
-
-
Beltran, H.1
Prandi, D.2
Mosquera, J.M.3
Benelli, M.4
Puca, L.5
Cyrta, J.6
-
6
-
-
84860168795
-
Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets
-
Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011;1:487–95.
-
(2011)
Cancer Discov
, vol.1
, pp. 487-495
-
-
Beltran, H.1
Rickman, D.S.2
Park, K.3
Chae, S.S.4
Sboner, A.5
Macdonald, T.Y.6
-
7
-
-
84962304309
-
Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers
-
Aparicio AM, Shen L, Tapia EL, Lu JF, Chen HC, Zhang J, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res 2016;22:1520–30.
-
(2016)
Clin Cancer Res
, vol.22
, pp. 1520-1530
-
-
Aparicio, A.M.1
Shen, L.2
Tapia, E.L.3
Jf, L.4
Chen, H.C.5
Zhang, J.6
-
8
-
-
84900463472
-
Neuroendocrine prostate cancer: Subtypes, biology, and clinical outcomes
-
Aggarwal R, Zhang T, Small EJ, Armstrong AJ. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J Natl Compr Canc Netw 2014;12:719–26.
-
(2014)
J Natl Compr Canc Netw
, vol.12
, pp. 719-726
-
-
Aggarwal, R.1
Zhang, T.2
Small, E.J.3
Armstrong, A.J.4
-
9
-
-
84255199223
-
Histological variants of prostatic carcinoma and their significance
-
Humphrey PA. Histological variants of prostatic carcinoma and their significance. Histopathology 2012;60:59–74.
-
(2012)
Histopathology
, vol.60
, pp. 59-74
-
-
Humphrey, P.A.1
-
11
-
-
84901008773
-
The many faces of neuroendocrine differentiation in prostate cancer progression
-
Terry S, Beltran H. The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 2014;4:60.
-
(2014)
Front Oncol
, vol.4
, pp. 60
-
-
Terry, S.1
Beltran, H.2
-
12
-
-
77954255681
-
Integrative genomic profiling of human prostate cancer
-
Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010;18:11–22.
-
(2010)
Cancer Cell
, vol.18
, pp. 11-22
-
-
Taylor, B.S.1
Schultz, N.2
Hieronymus, H.3
Gopalan, A.4
Xiao, Y.5
Carver, B.S.6
-
13
-
-
84875757638
-
Punctuated evolution of prostate cancer genomes
-
Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell 2013;153:666–77.
-
(2013)
Cell
, vol.153
, pp. 666-677
-
-
Baca, S.C.1
Prandi, D.2
Lawrence, M.S.3
Mosquera, J.M.4
Romanel, A.5
Drier, Y.6
-
14
-
-
84861581164
-
Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer
-
Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theuri-llat JP, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012;44:685–9.
-
(2012)
Nat Genet
, vol.44
, pp. 685-689
-
-
Barbieri, C.E.1
Baca, S.C.2
Lawrence, M.S.3
Demichelis, F.4
Blattner, M.5
Theuri-Llat, J.P.6
-
15
-
-
84863723010
-
The mutational landscape of lethal castration-resistant prostate cancer
-
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012;487:239–43.
-
(2012)
Nature
, vol.487
, pp. 239-243
-
-
Grasso, C.S.1
Wu, Y.M.2
Robinson, D.R.3
Cao, X.4
Dhanasekaran, S.M.5
Khan, A.P.6
-
17
-
-
84930225081
-
Integrative clinical genomics of advanced prostate cancer
-
Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161:1215–28.
-
(2015)
Cell
, vol.161
, pp. 1215-1228
-
-
Robinson, D.1
Van Allen, E.M.2
Ym, W.3
Schultz, N.4
Lonigro, R.J.5
Mosquera, J.M.6
-
18
-
-
85011688924
-
Genomic hallmarks of localized, non-indolent prostate cancer
-
Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang V, et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017;541:359–64.
-
(2017)
Nature
, vol.541
, pp. 359-364
-
-
Fraser, M.1
Sabelnykova, V.Y.2
Yamaguchi, T.N.3
Heisler, L.E.4
Livingstone, J.5
Huang, V.6
-
19
-
-
70349438989
-
A luminal epithelial stem cell that is a cell of origin for prostate cancer
-
Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 2009;461:495–500.
-
(2009)
Nature
, vol.461
, pp. 495-500
-
-
Wang, X.1
Kruithof-De Julio, M.2
Economides, K.D.3
Walker, D.4
Yu, H.5
Halili, M.V.6
-
20
-
-
23244460597
-
Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis
-
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005;436:725–30.
-
(2005)
Nature
, vol.436
, pp. 725-730
-
-
Chen, Z.1
Trotman, L.C.2
Shaffer, D.3
Lin, H.K.4
Dotan, Z.A.5
Niki, M.6
-
21
-
-
84879671701
-
A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer
-
Lunardi A, Ala U, Epping MT, Salmena L, Clohessy JG, Webster KA, et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat Genet 2013;45:747–55.
-
(2013)
Nat Genet
, vol.45
, pp. 747-755
-
-
Lunardi, A.1
Ala, U.2
Epping, M.T.3
Salmena, L.4
Clohessy, J.G.5
Webster, K.A.6
-
22
-
-
84963958984
-
Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis
-
Toivanen R, Mohan A, Shen MM. Basal progenitors contribute to repair of the prostate epithelium following induced luminal anoikis. Stem Cell Rep 2016;6:660–7.
-
(2016)
Stem Cell Rep
, vol.6
, pp. 660-667
-
-
Toivanen, R.1
Mohan, A.2
Shen, M.M.3
-
23
-
-
84922550917
-
Luminal cells are favored as the cell of origin for prostate cancer
-
Wang ZA, Toivanen R, Bergren SK, Chambon P, Shen MM. Luminal cells are favored as the cell of origin for prostate cancer. Cell Rep 2014;8:1339–46.
-
(2014)
Cell Rep
, vol.8
, pp. 1339-1346
-
-
Wang, Z.A.1
Toivanen, R.2
Bergren, S.K.3
Chambon, P.4
Shen, M.M.5
-
24
-
-
33748078111
-
Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer
-
Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 2006; 66:7889–98.
-
(2006)
Cancer Res
, vol.66
, pp. 7889-7898
-
-
Zhou, Z.1
Flesken-Nikitin, A.2
Corney, D.C.3
Wang, W.4
Goodrich, D.W.5
Roy-Burman, P.6
-
25
-
-
60849084906
-
Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer
-
Couto SS, Cao M, Duarte PC, Banach-Petrosky W, Wang S, Rom-anienko P, et al. Simultaneous haploinsufficiency of Pten and Trp53 tumor suppressor genes accelerates tumorigenesis in a mouse model of prostate cancer. Differentiation 2009;77:103–11.
-
(2009)
Differentiation
, vol.77
, pp. 103-111
-
-
Couto, S.S.1
Cao, M.2
Duarte, P.C.3
Banach-Petrosky, W.4
Wang, S.5
Rom-Anienko, P.6
-
26
-
-
84865739094
-
Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model
-
Floc’h N, Kinkade CW, Kobayashi T, Aytes A, Lefebvre C, Mitrofanova A, et al. Dual targeting of the Akt/mTOR signaling pathway inhibits castration-resistant prostate cancer in a genetically engineered mouse model. Cancer Res 2012;72:4483–93.
-
(2012)
Cancer Res
, vol.72
, pp. 4483-4493
-
-
Floc’H, N.1
Kinkade, C.W.2
Kobayashi, T.3
Aytes, A.4
Lefebvre, C.5
Mitrofanova, A.6
-
27
-
-
84900328733
-
Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy
-
Aytes A, Mitrofanova A, Lefebvre C, Alvarez MJ, Castillo-Martin M, Zheng T, et al. Cross-species regulatory network analysis identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy. Cancer Cell 2014;25:638–51.
-
(2014)
Cancer Cell
, vol.25
, pp. 638-651
-
-
Aytes, A.1
Mitrofanova, A.2
Lefebvre, C.3
Alvarez, M.J.4
Castillo-Martin, M.5
Zheng, T.6
-
28
-
-
26444463852
-
Molecular alterations in primary prostate cancer after androgen ablation therapy
-
Best CJ, Gillespie JW, Yi Y, Chandramouli GV, Perlmutter MA, Gath-right Y, et al. Molecular alterations in primary prostate cancer after androgen ablation therapy. Clin Cancer Res 2005;11:6823–34.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 6823-6834
-
-
Best, C.J.1
Gillespie, J.W.2
Yi, Y.3
Chandramouli, G.V.4
Perlmutter, M.A.5
Gath-Right, Y.6
-
29
-
-
84971273444
-
Redirecting abiraterone metabolism to fine-tune prostate cancer antiandrogen therapy
-
Li Z, Alyamani M, Li J, Rogacki K, Abazeed M, Upadhyay SK, et al. Redirecting abiraterone metabolism to fine-tune prostate cancer antiandrogen therapy. Nature 2016;533:547–51.
-
(2016)
Nature
, vol.533
, pp. 547-551
-
-
Li, Z.1
Alyamani, M.2
Li, J.3
Rogacki, K.4
Abazeed, M.5
Upadhyay, S.K.6
-
30
-
-
84937572793
-
Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer
-
Li Z, Bishop AC, Alyamani M, Garcia JA, Dreicer R, Bunch D, et al. Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature 2015;523:347–51.
-
(2015)
Nature
, vol.523
, pp. 347-351
-
-
Li, Z.1
Bishop, A.C.2
Alyamani, M.3
Garcia, J.A.4
Dreicer, R.5
Bunch, D.6
-
31
-
-
80052827038
-
Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants
-
Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011;17:5913–25.
-
(2011)
Clin Cancer Res
, vol.17
, pp. 5913-5925
-
-
Mostaghel, E.A.1
Marck, B.T.2
Plymate, S.R.3
Vessella, R.L.4
Balk, S.5
Matsumoto, A.M.6
-
32
-
-
28944432805
-
Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis
-
Hill R, Song Y, Cardiff RD, Van Dyke T. Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 2005;123:1001–11.
-
(2005)
Cell
, vol.123
, pp. 1001-1011
-
-
Hill, R.1
Song, Y.2
Cardiff, R.D.3
Van Dyke, T.4
-
33
-
-
84942833403
-
Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models
-
Mitrofanova A, Aytes A, Zou M, Shen MM, Abate-Shen C, Califano A. Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models. Cell Rep 2015;12:2060–71.
-
(2015)
Cell Rep
, vol.12
, pp. 2060-2071
-
-
Mitrofanova, A.1
Aytes, A.2
Zou, M.3
Shen, M.M.4
Abate-Shen, C.5
Califano, A.6
-
34
-
-
33645056171
-
Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer
-
Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66:2815–25.
-
(2006)
Cancer Res
, vol.66
, pp. 2815-2825
-
-
Stanbrough, M.1
Bubley, G.J.2
Ross, K.3
Golub, T.R.4
Rubin, M.A.5
Penning, T.M.6
-
35
-
-
77951723424
-
Molecular sampling of prostate cancer: A dilemma for predicting disease progression
-
Sboner A, Demichelis F, Calza S, Pawitan Y, Setlur SR, Hoshida Y, et al. Molecular sampling of prostate cancer: a dilemma for predicting disease progression. BMC Med Genomics 2010;3:8.
-
(2010)
BMC Med Genomics
, vol.3
, pp. 8
-
-
Sboner, A.1
Demichelis, F.2
Calza, S.3
Pawitan, Y.4
Setlur, S.R.5
Hoshida, Y.6
-
36
-
-
33845715104
-
The establishment of neuronal properties is controlled by Sox4 and Sox11
-
Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 2006;20:3475–86.
-
(2006)
Genes Dev
, vol.20
, pp. 3475-3486
-
-
Bergsland, M.1
Werme, M.2
Malewicz, M.3
Perlmann, T.4
Muhr, J.5
-
37
-
-
84873734770
-
Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors
-
Bhattaram P, Penzo-Mendez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 2010;1:9.
-
(2010)
Nat Commun
, vol.1
, pp. 9
-
-
Bhattaram, P.1
Penzo-Mendez, A.2
Sock, E.3
Colmenares, C.4
Kaneko, K.J.5
Vassilev, A.6
-
38
-
-
3242670531
-
Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling
-
Sock E, Rettig SD, Enderich J, Bosl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol 2004;24: 6635–44.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 6635-6644
-
-
Sock, E.1
Rettig, S.D.2
Enderich, J.3
Bosl, M.R.4
Tamm, E.R.5
Wegner, M.6
-
39
-
-
84891775193
-
Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells
-
Akdemir KC, Jain AK, Allton K, Aronow B, Xu X, Cooney AJ, et al. Genome-wide profiling reveals stimulus-specific functions of p53 during differentiation and DNA damage of human embryonic stem cells. Nucleic Acids Res 2014;42:205–23.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 205-223
-
-
Akdemir, K.C.1
Jain, A.K.2
Allton, K.3
Aronow, B.4
Xu, X.5
Cooney, A.J.6
-
40
-
-
67449135819
-
Interspecies comparison of prostate cancer gene-expression profiles reveals genes associated with aggressive tumors
-
Kela I, Harmelin A, Waks T, Orr-Urtreger A, Domany E, Eshhar Z. Interspecies comparison of prostate cancer gene-expression profiles reveals genes associated with aggressive tumors. Prostate 2009;69:1034–44.
-
(2009)
Prostate
, vol.69
, pp. 1034-1044
-
-
Kela, I.1
Harmelin, A.2
Waks, T.3
Orr-Urtreger, A.4
Domany, E.5
Eshhar, Z.6
-
41
-
-
34547699888
-
Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease
-
Berruti A, Mosca A, Porpiglia F, Bollito E, Tucci M, Vana F, et al. Chromogranin A expression in patients with hormone naive prostate cancer predicts the development of hormone refractory disease. J Urol 2007;178:838–43.
-
(2007)
J Urol
, vol.178
, pp. 838-843
-
-
Berruti, A.1
Mosca, A.2
Porpiglia, F.3
Bollito, E.4
Tucci, M.5
Vana, F.6
-
42
-
-
1842788109
-
Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy
-
Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004;45:586–92.
-
(2004)
Eur Urol
, vol.45
, pp. 586-592
-
-
Hirano, D.1
Okada, Y.2
Minei, S.3
Takimoto, Y.4
Nemoto, N.5
-
43
-
-
69349098273
-
Immortalization eliminates a roadblock during cellular reprogramming into iPS cells
-
Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, et al. Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 2009;460:1145–8.
-
(2009)
Nature
, vol.460
, pp. 1145-1148
-
-
Utikal, J.1
Polo, J.M.2
Stadtfeld, M.3
Maherali, N.4
Kulalert, W.5
Walsh, R.M.6
-
44
-
-
69349094006
-
A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity
-
Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 2009;460:1149–53.
-
(2009)
Nature
, vol.460
, pp. 1149-1153
-
-
Marion, R.M.1
Strati, K.2
Li, H.3
Murga, M.4
Blanco, R.5
Ortega, S.6
-
45
-
-
69349100455
-
Linking the p53 tumour suppressor pathway to somatic cell reprogramming
-
Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 2009;460:1140–4.
-
(2009)
Nature
, vol.460
, pp. 1140-1144
-
-
Kawamura, T.1
Suzuki, J.2
Wang, Y.V.3
Menendez, S.4
Morera, L.B.5
Raya, A.6
-
46
-
-
84913530834
-
Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage
-
Rasmussen MA, Holst B, Tumer Z, Johnsen MG, Zhou S, Stummann TC, et al. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage. Stem Cell Rep 2014;3:404–13.
-
(2014)
Stem Cell Rep
, vol.3
, pp. 404-413
-
-
Rasmussen, M.A.1
Holst, B.2
Tumer, Z.3
Johnsen, M.G.4
Zhou, S.5
Stummann, T.C.6
-
47
-
-
84868224979
-
Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation
-
Yi L, Lu C, Hu W, Sun Y, Levine AJ. Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res 2012;72:5635–45.
-
(2012)
Cancer Res
, vol.72
, pp. 5635-5645
-
-
Yi, L.1
Lu, C.2
Hu, W.3
Sun, Y.4
Levine, A.J.5
-
48
-
-
0028911462
-
Prostate cancer in a transgenic mouse
-
Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspi-nall JO, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 1995;92:3439–43.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 3439-3443
-
-
Greenberg, N.M.1
Demayo, F.2
Finegold, M.J.3
Medina, D.4
Tilley, W.D.5
Aspi-Nall, J.O.6
-
49
-
-
0035266381
-
A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential
-
Masumori N, Thomas TZ, Chaurand P, Case T, Paul M, Kasper S, et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 2001;61:2239–49.
-
(2001)
Cancer Res
, vol.61
, pp. 2239-2249
-
-
Masumori, N.1
Thomas, T.Z.2
Chaurand, P.3
Case, T.4
Paul, M.5
Kasper, S.6
-
50
-
-
85009286726
-
Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance
-
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355:78–83.
-
(2017)
Science
, vol.355
, pp. 78-83
-
-
Sy, K.1
Rosario, S.2
Wang, Y.3
Mu, P.4
Seshadri, M.5
Goodrich, Z.W.6
-
51
-
-
85009250505
-
SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer
-
Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen CC, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 2017;355:84–8.
-
(2017)
Science
, vol.355
, pp. 84-88
-
-
Mu, P.1
Zhang, Z.2
Benelli, M.3
Karthaus, W.R.4
Hoover, E.5
Chen, C.C.6
-
52
-
-
84991809206
-
SOX2 Is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin
-
Ferone G, Song JY, Sutherland KD, Bhaskaran R, Monkhorst K, Lambooij JP, et al. SOX2 Is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell 2016;30:519–32.
-
(2016)
Cancer Cell
, vol.30
, pp. 519-532
-
-
Ferone, G.1
Song, J.Y.2
Sutherland, K.D.3
Bhaskaran, R.4
Monkhorst, K.5
Lambooij, J.P.6
-
53
-
-
82955247074
-
Sequentially acting Sox transcription factors in neural lineage development
-
Bergsland M, Ramskold D, Zaouter C, Klum S, Sandberg R, Muhr J. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 2011;25:2453–64.
-
(2011)
Genes Dev
, vol.25
, pp. 2453-2464
-
-
Bergsland, M.1
Ramskold, D.2
Zaouter, C.3
Klum, S.4
Sandberg, R.5
Muhr, J.6
-
54
-
-
85009354343
-
The master neural transcription factor BRN2 is an androgen recep-tor-suppressed driver of neuroendocrine differentiation in prostate cancer
-
Bishop JL, Thaper D, Vahid S, Davies A, Ketola K, Kuruma H, et al. The master neural transcription factor BRN2 is an androgen recep-tor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov 2017;7:54–71.
-
(2017)
Cancer Discov
, vol.7
, pp. 54-71
-
-
Bishop, J.L.1
Thaper, D.2
Vahid, S.3
Davies, A.4
Ketola, K.5
Kuruma, H.6
-
55
-
-
84991790827
-
N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer
-
Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 2016;30:563–77.
-
(2016)
Cancer Cell
, vol.30
, pp. 563-577
-
-
Dardenne, E.1
Beltran, H.2
Benelli, M.3
Gayvert, K.4
Berger, A.5
Puca, L.6
-
56
-
-
84962090106
-
N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells
-
Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 2016;29:536–47.
-
(2016)
Cancer Cell
, vol.29
, pp. 536-547
-
-
Lee, J.K.1
Phillips, J.W.2
Smith, B.A.3
Park, J.W.4
Stoyanova, T.5
McCaffrey, E.F.6
-
57
-
-
84958982877
-
Combined MYC activation and pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer
-
Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D, et al. Combined MYC activation and pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res 2016;76:283–92.
-
(2016)
Cancer Res
, vol.76
, pp. 283-292
-
-
Hubbard, G.K.1
Mutton, L.N.2
Khalili, M.3
McMullin, R.P.4
Hicks, J.L.5
Bianchi-Frias, D.6
-
59
-
-
79957912763
-
ERG gene rearrangements are common in prostatic small cell carcinomas
-
Lotan TL, Gupta NS, Wang W, Toubaji A, Haffner MC, Chaux A, et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod Pathol 2011;24:820.
-
(2011)
Mod Pathol
, vol.24
, pp. 820
-
-
Lotan, T.L.1
Gupta, N.S.2
Wang, W.3
Toubaji, A.4
Haffner, M.C.5
Chaux, A.6
-
60
-
-
79953118839
-
Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors
-
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 2011;3:75ra26.
-
(2011)
Sci Transl Med
, vol.3
-
-
Sequist, L.V.1
Waltman, B.A.2
Dias-Santagata, D.3
Digumarthy, S.4
Turke, A.B.5
Fidias, P.6
-
61
-
-
84924590266
-
RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer
-
Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 2015;6:6377.
-
(2015)
Nat Commun
, vol.6
, pp. 6377
-
-
Niederst, M.J.1
Sequist, L.V.2
Poirier, J.T.3
Mermel, C.H.4
Lockerman, E.L.5
Garcia, A.R.6
|