메뉴 건너뛰기




Volumn 7, Issue 12, 2015, Pages 16024-16044

Automatic labelling and selection of training samples for high-resolution remote sensing image classification over urban areas

Author keywords

Active learning; Image classification; Maximum likelihood classification; Support vector machine; Training samples

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); GEOGRAPHIC INFORMATION SYSTEMS; IMAGE PROCESSING; IMAGE RECONSTRUCTION; MAXIMUM LIKELIHOOD; OPEN SYSTEMS; REMOTE SENSING; SAMPLING; SEMANTICS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES;

EID: 85019767202     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs71215819     Document Type: Article
Times cited : (55)

References (41)
  • 1
    • 2942752404 scopus 로고    scopus 로고
    • Comparison of IKONOS and QuickBird images for mapping mangrove species on the caribbean coast of panama
    • Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the caribbean coast of panama. Remote Sens. Environ. 2004, 91, 432-440.
    • (2004) Remote Sens. Environ. , vol.91 , pp. 432-440
    • Wang, L.1    Sousa, W.P.2    Gong, P.3    Biging, G.S.4
  • 2
    • 34247346536 scopus 로고    scopus 로고
    • A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery
    • Zhang, L.; Huang, X.; Huang, B.; Li, P. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2950-2961.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2950-2961
    • Zhang, L.1    Huang, X.2    Huang, B.3    Li, P.4
  • 3
    • 0036991339 scopus 로고    scopus 로고
    • A model-based mixture-supervised classification approach in hyperspectral data analysis
    • Dundar, M.M.; Landgrebe, D. A model-based mixture-supervised classification approach in hyperspectral data analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2692-2699.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , pp. 2692-2699
    • Dundar, M.M.1    Landgrebe, D.2
  • 4
    • 84896318609 scopus 로고    scopus 로고
    • Is there a preferred classifier for operational thematic mapping? IEEE Trans
    • Richards, J.A.; Kingsbury, N.G. Is there a preferred classifier for operational thematic mapping? IEEE Trans. Geosci. Remote Sens. 2014, 52, 2715-2725.
    • (2014) Geosci. Remote Sens. , vol.52 , pp. 2715-2725
    • Richards, J.A.1    Kingsbury, N.G.2
  • 7
    • 84888293581 scopus 로고    scopus 로고
    • Ensemble of multilayer perceptrons for change detection in remotely sensed images
    • Roy, M.; Routaray, D.; Ghosh, S.; Ghosh, A. Ensemble of multilayer perceptrons for change detection in remotely sensed images. IEEE Geosci. Remote Sens. 2014, 11, 49-53.
    • (2014) IEEE Geosci. Remote Sens. , vol.11 , pp. 49-53
    • Roy, M.1    Routaray, D.2    Ghosh, S.3    Ghosh, A.4
  • 9
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 10
    • 33748331356 scopus 로고    scopus 로고
    • A multilevel context-based system for classification of very high spatial resolution images
    • Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587-2600.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2587-2600
    • Bruzzone, L.1    Carlin, L.2
  • 11
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery
    • Huang, X.; Zhang, L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 2013, 51, 257-272.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 257-272
    • Huang, X.1    Zhang, L.2
  • 12
    • 77951204124 scopus 로고    scopus 로고
    • Comparison of vector stacking, multi-SVMs fuzzy output, and multi-svms voting methods for multiscale vhr urban mapping
    • Huang, X.; Zhang, L. Comparison of vector stacking, multi-SVMs fuzzy output, and multi-svms voting methods for multiscale vhr urban mapping. IEEE Geosci. Remote Sens. Lett. 2010, 7, 261-265.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , pp. 261-265
    • Huang, X.1    Zhang, L.2
  • 13
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297-2307.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 15
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606-617.
    • (2011) IEEE J. Sel. Top. Signal Process. , vol.5 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 16
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014-1031.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 17
    • 84860318734 scopus 로고    scopus 로고
    • View generation for multiview maximum disagreement based active learning for hyperspectral image classification
    • Di, W.; Crawford, M.M. View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1942-1954.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 1942-1954
    • Di, W.1    Crawford, M.M.2
  • 18
    • 84902106392 scopus 로고    scopus 로고
    • A novel SOM-SVM-Based active learning technique for remote sensing image classification
    • Patra, S.; Bruzzone, L. A novel SOM-SVM-Based active learning technique for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6899-6910.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 6899-6910
    • Patra, S.1    Bruzzone, L.2
  • 20
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Mitra, P.; Shankar, B.U.; Pal, S.K. Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognit. Lett. 2004, 25, 1067-1074.
    • (2004) Pattern Recognit. Lett. , vol.25 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 21
    • 84869490360 scopus 로고    scopus 로고
    • Active learning for domain adaptation in the supervised classification of remote sensing images
    • Persello, C.; Bruzzone, L. Active learning for domain adaptation in the supervised classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4468-4483.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 4468-4483
    • Persello, C.1    Bruzzone, L.2
  • 22
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • Rajan, S.; Ghosh, J.; Crawford, M.M. An active learning approach to hyperspectral data classification. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1231-1242.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 24
    • 79960463240 scopus 로고    scopus 로고
    • A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery
    • Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721-732.
    • (2011) Photogramm. Eng. Remote Sens. , vol.77 , pp. 721-732
    • Huang, X.1    Zhang, L.2
  • 25
    • 84863284935 scopus 로고    scopus 로고
    • Morphological building/shadow index for building extraction from high-resolution imagery over urban areas
    • Huang, X.; Zhang, L. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 161-172.
    • (2012) IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. , vol.5 , pp. 161-172
    • Huang, X.1    Zhang, L.2
  • 26
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.-C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 257-266
    • Gao, B.-C.1
  • 27
    • 0026293969 scopus 로고
    • Normalized difference vegetation index measurements from the advanced very high resolution radiometer
    • Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. Normalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257-277.
    • (1991) Remote Sens. Environ. , vol.35 , pp. 257-277
    • Goward, S.N.1    Markham, B.2    Dye, D.G.3    Dulaney, W.4    Yang, J.5
  • 29
    • 84894370515 scopus 로고    scopus 로고
    • A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    • Huang, X.; Lu, Q.; Zhang, L. A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 90, 36-48.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3
  • 30
    • 84879967034 scopus 로고    scopus 로고
    • Fault-tolerant building change detection from urban high-resolution remote sensing imagery
    • Tang, Y.; Huang, X.; Zhang, L. Fault-tolerant building change detection from urban high-resolution remote sensing imagery. IEEE Geosci. Remote Sens Lett. 2013, 10, 1060-1064.
    • (2013) IEEE Geosci. Remote Sens Lett. , vol.10 , pp. 1060-1064
    • Tang, Y.1    Huang, X.2    Zhang, L.3
  • 31
    • 85019923615 scopus 로고    scopus 로고
    • accessed on 25 November
    • Wikipedia. Available online: https://en.wikipedia.org/wiki/HSL_and_HSV (accessed on 25 November 2015).
    • (2015)
  • 34
    • 14344263218 scopus 로고    scopus 로고
    • In Proceedings of the 21th International Conference on Machine Learning, Banff, AB, Canada, 4-8 June
    • Zadrozny, B. Learning and evaluating classifiers under sample selection bias. In Proceedings of the 21th International Conference on Machine Learning, Banff, AB, Canada, 4-8 June 2004.
    • (2004) Learning and evaluating classifiers under sample selection bias
    • Zadrozny, B.1
  • 35
    • 33745756516 scopus 로고    scopus 로고
    • The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm
    • Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a svm. Remote Sens. Environ. 2006, 103, 179-189.
    • (2006) Remote Sens. Environ. , vol.103 , pp. 179-189
    • Foody, G.M.1    Mathur, A.2
  • 36
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Møller, M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993, 6, 525-533.
    • (1993) Neural Netw. , vol.6 , pp. 525-533
    • Møller, M.F.1
  • 37
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 38
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217-222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 39
    • 10044219654 scopus 로고    scopus 로고
    • In Active learning to recognize multiple types of plankton
    • In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23-26 August
    • Luo, T.; Kramer, K.; Samson, S.; Remsen, A.; Goldgof, D.B.; Hall, L.O.; Hopkins, T. In Active learning to recognize multiple types of plankton. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23-26 August 2004; Volume 473, pp. 478-481.
    • (2004) , vol.473 , pp. 478-481
    • Luo, T.1    Kramer, K.2    Samson, S.3    Remsen, A.4    Goldgof, D.B.5    Hall, L.O.6    Hopkins, T.7
  • 40
    • 84902080705 scopus 로고    scopus 로고
    • Active and semisupervised learning for the classification of remote sensing images
    • Persello, C.; Bruzzone, L. Active and semisupervised learning for the classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6937-6956.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 6937-6956
    • Persello, C.1    Bruzzone, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.