메뉴 건너뛰기




Volumn 52, Issue 5, 2014, Pages 2715-2725

Is there a preferred classifier for operational thematic mapping?

Author keywords

Classification; maximum likelihood classifier (MLC); neural network; support vector machine (SVM); thematic mapping

Indexed keywords

CLASSIFICATION (OF INFORMATION); MAPPING; NEURAL NETWORKS;

EID: 84896318609     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2264831     Document Type: Article
Times cited : (8)

References (34)
  • 2
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • DOI 10.1080/01431160110040323
    • C. Huang, L. S. Davis, and J. R. G. Townshend, An assessment of support vector machines for land cover classification, Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, 2002. (Pubitemid 34119904)
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 5
    • 14644399190 scopus 로고    scopus 로고
    • Analysis of remotely sensed data: The formative decades and the future
    • DOI 10.1109/TGRS.2004.837326
    • J. A. Richards, Analysis of remotely sensed data: The formative decades and the future, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 422-432, Mar. 2005. (Pubitemid 40320265)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 422-432
    • Richards, J.A.1
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, A tutorial on support vectormachines for pattern recognition, Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121-167, Jun. 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • Nov
    • B.-C. Kuo and D. A. Landgrebe, A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11, pp. 2486-2494, Nov. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.11 , pp. 2486-2494
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 10
    • 0036991339 scopus 로고    scopus 로고
    • A model-based supervised classification approach in hyperspectral data analysis
    • Dec
    • M. M. Dundar and D. A. Landgrebe, A model-based supervised classification approach in hyperspectral data analysis, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2692-2699, Dec. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens , vol.40 , Issue.12 , pp. 2692-2699
    • Dundar, M.M.1    Landgrebe, D.A.2
  • 11
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 16
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • A. Jain, J. Mao, and K. M. Mohiuddin, Artificial neural networks: A tutorial, Computer, vol. 29, no. 3, pp. 31-44, Mar. 1996. (Pubitemid 126515068)
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 18
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • J. A. Gualtieri and R. F. Cromp, Support vector machines for hyperspectral remote sensing classification, in Proc. SPIE, 1998, vol. 3584, pp. 221-232.
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 20
    • 0016882368 scopus 로고
    • Classification of multispectral image data by extraction and classification of homogeneous objects
    • Jan
    • R. L. Kettig and D. A. Landgrebe, Classification of multispectral image data by extraction and classification of homogeneous objects, IEEE Trans. Geosci. Electron., vol. GE-14, no. 1, pp. 19-26, Jan. 1976.
    • (1976) IEEE Trans. Geosci. Electron. , vol.14 , Issue.1 , pp. 19-26
    • Kettig, R.L.1    Landgrebe, D.A.2
  • 21
    • 0032633354 scopus 로고    scopus 로고
    • Covariance estimation with limited training samples
    • Jul
    • S. Tajudin and D. A. Landgrebe, Covariance estimation with limited training samples, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 4, pp. 2113-2118, Jul. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.4 , pp. 2113-2118
    • Tajudin, S.1    Landgrebe, D.A.2
  • 22
    • 84865779590 scopus 로고    scopus 로고
    • Decision tree classification of remotely sensed satellite data using spectral separability matrix
    • Nov
    • M. K. Ghose, R. Pradham, and S. S. Ghose, Decision tree classification of remotely sensed satellite data using spectral separability matrix, Int. J. Adv. Comput. Sci. Appl., vol. 1, no. 5, pp. 93-101, Nov. 2010.
    • (2010) Int. J. Adv. Comput. Sci. Appl , vol.1 , Issue.5 , pp. 93-101
    • Ghose, M.K.1    Pradham, R.2    Ghose, S.S.3
  • 23
    • 1942471946 scopus 로고    scopus 로고
    • Opening the black box of neural networks for remote sensing image classification
    • DOI 10.1080/01431160310001618798
    • F. Qiu and J. R. Jensen, Opening the black box of neural networks for remote sensing image classification, Int. J. Remote Sens., vol. 25, no. 9, pp. 1749-1768, May 2004. (Pubitemid 38516808)
    • (2004) International Journal of Remote Sensing , vol.25 , Issue.9 , pp. 1749-1768
    • Qiu, F.1    Jensen, J.R.2
  • 24
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug
    • F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 25
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, Kernel-based methods for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 27
    • 34247503334 scopus 로고    scopus 로고
    • Sparse inverse covariance estimates for hyperspectral image classification
    • DOI 10.1109/TGRS.2007.892598
    • A. Berge, A. C. Jensen, and A. H. Schistad Solberg, Sparse inverse covariance estimates for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1399-1407, May 2007. (Pubitemid 46652340)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.5 , pp. 1399-1407
    • Berge, A.1    Jensen, A.C.2    Solberg, A.H.S.3
  • 28
    • 0029750883 scopus 로고    scopus 로고
    • Sparse inverse covariance matrices and the efficient maximum likelihood classification of hyperspectral data
    • Feb
    • R. E. Roger, Sparse inverse covariance matrices and the efficient maximum likelihood classification of hyperspectral data, Int. J. Remote Sens., vol. 17, no. 3, pp. 589-613, Feb. 1996.
    • (1996) Int. J. Remote Sens , vol.17 , Issue.3 , pp. 589-613
    • Roger, R.E.1
  • 29
    • 0028403418 scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • Mar
    • X. Jia and J. A. Richards, Efficient maximum likelihood classification for imaging spectrometer data sets, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 2, pp. 274-281, Mar. 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.2 , pp. 274-281
    • Jia, X.1    Richards, J.A.2
  • 30
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • DOI 10.1109/TGRS.2006.886177
    • S. B. Serpico and G. Moser, Extraction of spectral channels from hyperspectral images for classification purposes, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 484-495, Feb. 2007. (Pubitemid 46183043)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.B.1    Moser, G.2
  • 31
    • 79951950272 scopus 로고    scopus 로고
    • Support vector machines in remote sensing: A review
    • May
    • G. Mountrakis, J. Im, and C. Ogole, Support vector machines in remote sensing: A review, ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 247-259, May 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens , vol.66 , Issue.3 , pp. 247-259
    • Mountrakis, G.1    Im, J.2    Ogole, C.3
  • 32
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, Feature selection for classification of hyperspectral data by SVM, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 33
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. A. Landgrebe, An adaptive classifier design for high dimensional data analysis with a limited training data set, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 34
    • 0021644048 scopus 로고
    • Irrigated crop inventory by classification of satellite image data
    • Jun
    • G. E. Moreton and J. A. Richards, Irrigated crop inventory by classification of satellite image data, Photogramm. Eng. Remote Sens., vol. 50, no. 6, pp. 729-730, Jun. 1984.
    • (1984) Photogramm. Eng. Remote Sens , vol.50 , Issue.6 , pp. 729-730
    • Moreton, G.E.1    Richards, J.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.