메뉴 건너뛰기




Volumn , Issue , 2014, Pages 14-25

Translation modeling with bidirectional recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS; TRANSLATION (LANGUAGES);

EID: 84961291354     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/d14-1003     Document Type: Conference Paper
Times cited : (178)

References (43)
  • 1
    • 85075436378 scopus 로고    scopus 로고
    • Association for Computational Linguistics
    • Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012. Deep neural network language models. In Proceedings of the NAACLHLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language Modeling for HLT, pages 20-28. Association for Computational Linguistics.
    • (2012) Deep Neural Network Language Models , pp. 20-28
    • Arisoy, E.1    Sainath, T.N.2    Kingsbury, B.3    Ramabhadran, B.4
  • 3
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gra- dient descent is difficult
    • Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term dependencies with gra- dient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166.
    • (1994) Neural Networks, IEEE Transactions on , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 5
    • 84961291873 scopus 로고    scopus 로고
    • Text-to-text machine translation using the RECONTRA connectionist model
    • Alicante, Spain
    • Maria Asunción Castaño and Francisco Casacuberta. 1999. Text-to-text machine translation using the RECONTRA connectionist model. In Lecture Notes in Computer Science (IWANN 99), volume 1607, pages 683-692, Alicante, Spain.
    • (1999) Lecture Notes in Computer Science (IWANN 99) , vol.1607 , pp. 683-692
    • Castaño, M.A.1    Casacuberta, F.2
  • 7
    • 0003396042 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • Harvard University, Cambridge, MA, August
    • Stanley F. Chen and Joshua Goodman. 1998. An Empirical Study of Smoothing Techniques for Language Modeling. Technical Report TR-10-98, Computer Science Group, Harvard University, Cambridge, MA, August.
    • (1998) Technical Report TR-10-98, Computer Science Group
    • Chen, S.F.1    Goodman, J.2
  • 10
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. 2000. Learning to forget: Continual prediction with LSTM. Neural computation, 12(10):2451-2471.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 13
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18(5):602-610.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 23
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrent-neuralnetwork architectures and learning methods for spoken language understanding
    • Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua Bengio. 2013. Investigation of recurrent-neuralnetwork architectures and learning methods for spoken language understanding. In Interspeech, pages 3771-3775.
    • (2013) Terspeech , pp. 3771-3775
    • Mesnil, G.1    He, X.2    Deng, L.3    Bengio, Y.4
  • 25
    • 84859981825 scopus 로고    scopus 로고
    • Intelligent selection of language model training data
    • Short Papers, Uppsala, Sweden, July
    • Robert C. Moore andWilliam Lewis. 2010. Intelligent Selection of Language Model Training Data. In ACL (Short Papers), pages 220-224, Uppsala, Sweden, July.
    • (2010) ACL , pp. 220-224
    • Lewis, R.C.M.A.1
  • 29
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • J. L. McClelland, D. E. Rumelhart, and The PDP Research Group:, The MIT Press
    • David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning Internal Representations by Error Propagation. In: J. L. McClelland, D. E. Rumelhart, and The PDP Research Group: "Parallel Distributed Processing, Volume 1: Foundations". The MIT Press.
    • (1986) Parallel Distributed Processing, Volume 1: Foundations
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 84905273821 scopus 로고    scopus 로고
    • Continuous space translation models for phrase-based statistical machine translation
    • Mumbai, India, December
    • Holger Schwenk. 2012. Continuous Space Translation Models for Phrase-Based Statistical Machine Translation. In 25th International Conference on Computational Linguistics (COLING), pages 1071-1080, Mumbai, India, December.
    • (2012) 25th International Conference on Computational Linguistics (COLING) , pp. 1071-1080
    • Schwenk, H.1
  • 35
    • 84878402147 scopus 로고    scopus 로고
    • Lstm neural networks for language modeling
    • Portland, OR, USA, September
    • Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. LSTM neural networks for language modeling. In Interspeech, Portland, OR, USA, September.
    • (2012) Terspeech
    • Sundermeyer, M.1    Schlüter, R.2    Ney, H.3
  • 37
    • 84926298172 scopus 로고    scopus 로고
    • Decoding with largescale neural language models improves translation
    • Seattle, Washington, USA, October. Association for Computational Linguistics
    • Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. 2013. Decoding with largescale neural language models improves translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1387-1392, Seattle, Washington, USA, October. Association for Computational Linguistics.
    • (2013) Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing , pp. 1387-1392
    • Vaswani, A.1    Zhao, Y.2    Fossum, V.3    Chiang, D.4
  • 39
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Paul J. Werbos. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78(10):1550-1560.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 40
    • 0001765578 scopus 로고
    • Gradient- based learning algorithms for recurrent networks and their computational complexity
    • Yves Chauvain and David E. Rumelhart, Lawrence Erlbaum Publishers
    • Ronald J. Williams and David Zipser. 1995. Gradient- Based Learning Algorithms for Recurrent Networks and Their Computational Complexity. In: Yves Chauvain and David E. Rumelhart: "Back- Propagation: Theory, Architectures and Applications". Lawrence Erlbaum Publishers.
    • (1995) Back- Propagation: Theory, Architectures and Applications
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.