메뉴 건너뛰기




Volumn 21, Issue 5, 2014, Pages 833-841

Assisted annotation of medical free text using RapTAT

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; AUTOMATION; HEALTH CARE QUALITY; HEART FAILURE; HUMAN; INFORMATION PROCESSING; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING; RAPID TEXT ANNOTATION TOOL;

EID: 84906322293     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2013-002255     Document Type: Article
Times cited : (39)

References (39)
  • 1
    • 84856960332 scopus 로고    scopus 로고
    • Detection of infectious symptoms from VA emergency department and primary care clinical documentation
    • Matheny ME, Fitzhenry F, Speroff T, et al. Detection of infectious symptoms from VA emergency department and primary care clinical documentation. Int J Med Inform 2012;81:143-56.
    • (2012) Int J Med Inform , vol.81 , pp. 143-156
    • Matheny, M.E.1    Fitzhenry, F.2    Speroff, T.3
  • 2
    • 80052063328 scopus 로고    scopus 로고
    • Automated identification of postoperative complications within an electronic medical record using natural language processing
    • Murff HJ, Fitz Henry F, Matheny ME, et al. Automated identification of postoperative complications within an electronic medical record using natural language processing. JAMA 2011;306:848-55.
    • (2011) JAMA , vol.306 , pp. 848-855
    • Murff, H.J.1    Fitz Henry, F.2    Matheny, M.E.3
  • 3
    • 77955291899 scopus 로고    scopus 로고
    • Automated evaluation of electronic discharge notes to assess quality of care for cardiovascular diseases using Medical Language Extraction and Encoding System (MedLEE)
    • Chiang JH, Lin JW, Yang CW. Automated evaluation of electronic discharge notes to assess quality of care for cardiovascular diseases using Medical Language Extraction and Encoding System (MedLEE). J Am Med Inform Assoc 2010;17:245-52.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 245-252
    • Chiang, J.H.1    Lin, J.W.2    Yang, C.W.3
  • 4
    • 84861530893 scopus 로고    scopus 로고
    • Developing a natural language processing application for measuring the quality of colonoscopy procedures
    • Harkema H, Chapman WW, Saul M, et al. Developing a natural language processing application for measuring the quality of colonoscopy procedures. J Am Med Inform Assoc 2011;18(Suppl 1):i150-6.
    • (2011) J Am Med Inform Assoc , vol.18 , Issue.SUPPL 1 , pp. 1150-1156
    • Harkema, H.1    Chapman, W.W.2    Saul, M.3
  • 5
    • 84881338064 scopus 로고    scopus 로고
    • Meaningful measurement: developing a measurement system to improve blood pressure control in patients with chronic kidney disease
    • Greenberg JO, Vakharia N, Szent-Gyorgyi LE, et al. Meaningful measurement: developing a measurement system to improve blood pressure control in patients with chronic kidney disease. J Am Med Inform Assoc 2013;20:e97-101.
    • (2013) J Am Med Inform Assoc , vol.20
    • Greenberg, J.O.1    Vakharia, N.2    Szent-Gyorgyi, L.E.3
  • 6
    • 25444496154 scopus 로고    scopus 로고
    • ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures): endorsed by the Heart Failure Society of America
    • Bonow RO, Bennett S, Casey DE Jr, et al. ACC/AHA clinical performance measures for adults with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures (Writing Committee to Develop Heart Failure Clinical Performance Measures): endorsed by the Heart Failure Society of America. Circulation 2005;112:1853-87.
    • (2005) Circulation , vol.112 , pp. 1853-1887
    • Bonow, R.O.1    Bennett, S.2    Casey Jr., D.E.3
  • 7
    • 84861839384 scopus 로고    scopus 로고
    • A method for determining the number of documents needed for a gold standard corpus
    • Juckett D. A method for determining the number of documents needed for a gold standard corpus. J Biomed Inform 2012;45:460-70.
    • (2012) J Biomed Inform , vol.45 , pp. 460-470
    • Juckett, D.1
  • 8
    • 80053240828 scopus 로고    scopus 로고
    • Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions
    • Chapman WW, Nadkarni PM, Hirschman L, et al. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J Am Med Inform Assoc 2011;18:540-3.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 540-543
    • Chapman, W.W.1    Nadkarni, P.M.2    Hirschman, L.3
  • 9
    • 33750028795 scopus 로고    scopus 로고
    • Corrective feedback and persistent learning for information extraction
    • Culotta A, Kristjansson T, McCallum A, et al. Corrective feedback and persistent learning for information extraction. Artif Intell 2006;170:1101-22.
    • (2006) Artif Intell , vol.170 , pp. 1101-1122
    • Culotta, A.1    Kristjansson, T.2    McCallum, A.3
  • 10
    • 70349466623 scopus 로고    scopus 로고
    • Building a semantically annotated corpus of clinical texts
    • Roberts A, Gaizauskas R, Hepple M, et al. Building a semantically annotated corpus of clinical texts. J Biomed Inform 2009;42:950-66.
    • (2009) J Biomed Inform , vol.42 , pp. 950-966
    • Roberts, A.1    Gaizauskas, R.2    Hepple, M.3
  • 14
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers
    • Tahoe City, California: Morgan Kaufmann
    • Dagan I, Engleson SP. Committee-based sampling for training probabilistic classifiers. Twelfth International Conference on Machine Learning; Tahoe City, California: Morgan Kaufmann, 1995.
    • (1995) Twelfth International Conference on Machine Learning;
    • Dagan, I.1    Engleson, S.P.2
  • 15
    • 84880319025 scopus 로고    scopus 로고
    • Active learning for part-of-speech tagging: accelerating corpus annotation
    • Prague, Czech Republic: Association for Computational Linguistics
    • Ringger E, McClanahan P, Haertel R, et al. Active learning for part-of-speech tagging: accelerating corpus annotation. Linguistic Annotation Workshop; Prague, Czech Republic: Association for Computational Linguistics, 2007.
    • (2007) Linguistic Annotation Workshop
    • Ringger, E.1    McClanahan, P.2    Haertel, R.3
  • 18
    • 37249016011 scopus 로고    scopus 로고
    • Investigating the effects of selective sampling on the annotation task
    • Ann Arbor, Michigan: Association for Computational Linguistics
    • Hachey B, Beatrice A, Becker M. Investigating the effects of selective sampling on the annotation task. Ninth Conference on Computational Natural Language Learning; Ann Arbor, Michigan: Association for Computational Linguistics, 2005.
    • (2005) Ninth Conference on Computational Natural Language Learning;
    • Hachey, B.1    Beatrice, A.2    Becker, M.3
  • 20
    • 84858288593 scopus 로고    scopus 로고
    • Applying active learning to assertion classification of concepts in clinical text
    • Chen Y, Mani S, Xu H. Applying active learning to assertion classification of concepts in clinical text. J Biomed Inform 2012;45:265-72.
    • (2012) J Biomed Inform , vol.45 , pp. 265-272
    • Chen, Y.1    Mani, S.2    Xu, H.3
  • 21
    • 84901847800 scopus 로고    scopus 로고
    • Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements
    • Lingren T, Deleger L, Molnar K, et al. Evaluating the impact of pre-annotation on annotation speed and potential bias: natural language processing gold standard development for clinical named entity recognition in clinical trial announcements. J Am Med Inform Assoc 2014;21:406-13.
    • (2014) J Am Med Inform Assoc , vol.21 , pp. 406-413
    • Lingren, T.1    Deleger, L.2    Molnar, K.3
  • 23
    • 84859103645 scopus 로고    scopus 로고
    • Semi-automated named entity annotation
    • Prague, Czech Republic: Association for Computational Linguistics
    • Ganchev K, Pereira F, Mandel M, et al. Semi-automated named entity annotation. Linguistic Annotation Workshop; Prague, Czech Republic: Association for Computational Linguistics, 2007.
    • (2007) Linguistic Annotation Workshop
    • Ganchev, K.1    Pereira, F.2    Mandel, M.3
  • 24
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: the Penn treebank
    • Marcus MP, Marcinkiewicz MA, Santorini B. Building a large annotated corpus of English: the Penn treebank. Comput Linguist 1993;19:313-30.
    • (1993) Comput Linguist , vol.19 , pp. 313-330
    • Marcus, M.P.1    Marcinkiewicz, M.A.2    Santorini, B.3
  • 25
    • 84876805534 scopus 로고    scopus 로고
    • Influence of pre-annotation on POS-tagged corpus development
    • Uppsala, Sweden: Association for Computational Linguistics
    • Fort K, Sagot B. Influence of pre-annotation on POS-tagged corpus development. Fourth Linguistic Annotation Workshop; Uppsala, Sweden: Association for Computational Linguistics, 2010.
    • (2010) Fourth Linguistic Annotation Workshop;
    • Fort, K.1    Sagot, B.2
  • 27
    • 84880315830 scopus 로고    scopus 로고
    • Assessing the benefits of partial automatic pre-labeling for frame-semantic annotation
    • Suntec, Singapore: Association for Computational Linguistics
    • Rehbein I, Ruppenhofer J, Sporleder C. Assessing the benefits of partial automatic pre-labeling for frame-semantic annotation. Third Linguistic Annotation Workshop; Suntec, Singapore: Association for Computational Linguistics, 2009.
    • (2009) Third Linguistic Annotation Workshop
    • Rehbein, I.1    Ruppenhofer, J.2    Sporleder, C.3
  • 29
    • 84880255421 scopus 로고    scopus 로고
    • Complex linguistic annotation-no easy way out!: a case from Bangla and Hindi POS labeling tasks
    • Suntec, Singapore: Association for Computational Linguistics
    • Dandapat S, Biswas P, Choudhury M, et al. Complex linguistic annotation-no easy way out!: a case from Bangla and Hindi POS labeling tasks. Third Linguistic Annotation Workshop; Suntec, Singapore: Association for Computational Linguistics, 2009.
    • (2009) Third Linguistic Annotation Workshop
    • Dandapat, S.1    Biswas, P.2    Choudhury, M.3
  • 30
    • 79952765434 scopus 로고    scopus 로고
    • Semi-automatic semantic annotation of PubMed queries: a study on quality, efficiency, satisfaction
    • Névéol A, Islamaj Doǧan R, Lu Z. Semi-automatic semantic annotation of PubMed queries: a study on quality, efficiency, satisfaction. J Biomed Inform 2011;44:310-18.
    • (2011) J Biomed Inform , vol.44 , pp. 310-318
    • Névéol, A.1    Islamaj Doǧan, R.2    Lu, Z.3
  • 31
    • 84885845957 scopus 로고    scopus 로고
    • ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines
    • Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;128:e240-327.
    • (2013) Circulation 2013 , vol.128
    • Yancy, C.W.1    Jessup, M.2    Bozkurt, B.3
  • 35
    • 84899493552 scopus 로고    scopus 로고
    • Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives
    • Gobbel GT, Reeves R, Jayaramaraja S, et al. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. J Biomed Inform http://dx.doi.org/10.1016/j.jbi.2013.11.008.
    • J Biomed Inform
    • Gobbel, G.T.1    Reeves, R.2    Jayaramaraja, S.3
  • 36
    • 84906305320 scopus 로고    scopus 로고
    • Creating multilingual gold standard corpora for biomedical concept recognition
    • Valencia, Span
    • Kors JA, Clematide S, Akhondi SA, et al. Creating multilingual gold standard corpora for biomedical concept recognition. CLEF 2013 Conference; Valencia, Span: 2013.
    • (2013) CLEF 2013 Conference
    • Kors, J.A.1    Clematide, S.2    Akhondi, S.A.3
  • 38
    • 78650217579 scopus 로고    scopus 로고
    • The MITRE identification scrubber toolkit: design, training, and assessment
    • Aberdeen J, Bayer S, Yeniterzi R, et al. The MITRE identification scrubber toolkit: design, training, and assessment. Int J Med Inform 2010;79:849-59.
    • (2010) Int J Med Inform , vol.79 , pp. 849-859
    • Aberdeen, J.1    Bayer, S.2    Yeniterzi, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.