메뉴 건너뛰기




Volumn 47, Issue 7, 2014, Pages 2367-2378

HEp-2 cells classification via sparse representation of textural features fused into dissimilarity space

Author keywords

Dissimilarity fusion; Dissimilarity representation; HEp 2 cells; Local binary patterns; Multiple level representation; SIFT descriptors; Sparse representation; Staining patterns classification

Indexed keywords

FLUORESCENCE;

EID: 84897115186     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2013.09.026     Document Type: Article
Times cited : (58)

References (38)
  • 1
    • 33645957073 scopus 로고    scopus 로고
    • Objective quality evaluation of fluorescence images to optimize automatic image acquisition
    • R. Hiemann et al. Objective quality evaluation of fluorescence images to optimize automatic image acquisition Cytometry Part A 69A 3 2006 182 184
    • (2006) Cytometry Part A , vol.69 A , Issue.3 , pp. 182-184
    • Hiemann, R.1
  • 9
    • 67349187542 scopus 로고    scopus 로고
    • Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis
    • P. Soda, and G. Iannello Aggregation of classifiers for staining pattern recognition in antinuclear autoantibodies analysis IEEE Transactions on Information Technology in Biomedicine 13 3 2009 322 329
    • (2009) IEEE Transactions on Information Technology in Biomedicine , vol.13 , Issue.3 , pp. 322-329
    • Soda, P.1    Iannello, G.2
  • 10
    • 34848855828 scopus 로고    scopus 로고
    • Automatic analysis of immunofluorescence patterns of HEp-2 cells
    • R. Hiemann et al. Automatic analysis of immunofluorescence patterns of HEp-2 cells Annals of the New York Academy of Sciences 1109 1 2007 358 371
    • (2007) Annals of the New York Academy of Sciences , vol.1109 , Issue.1 , pp. 358-371
    • Hiemann, R.1
  • 11
    • 70349887648 scopus 로고    scopus 로고
    • A multiple expert system for classifying fluorescent intensity in antinuclear autoantibodies analysis
    • P. Soda, G. Iannello, and M. Vento A multiple expert system for classifying fluorescent intensity in antinuclear autoantibodies analysis Pattern Analysis and Applications 12 2009 215 226
    • (2009) Pattern Analysis and Applications , vol.12 , pp. 215-226
    • Soda, P.1    Iannello, G.2    Vento, M.3
  • 12
    • 0043264310 scopus 로고    scopus 로고
    • Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics
    • U. Sack, S. Knoechner, H. Warschkau, U. Pigla, F. Emmrich, and M. Kamprad Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics Autoimmunity Reviews 2 2003 298 304
    • (2003) Autoimmunity Reviews , vol.2 , pp. 298-304
    • Sack, U.1    Knoechner, S.2    Warschkau, H.3    Pigla, U.4    Emmrich, F.5    Kamprad, M.6
  • 14
    • 0033640841 scopus 로고    scopus 로고
    • Rotation-invariant texture classification using feature distributions
    • M. Pietikainen, T. Ojala, and Z. Xu Rotation-invariant texture classification using feature distributions Pattern Recognition 33 2000 43 52
    • (2000) Pattern Recognition , vol.33 , pp. 43-52
    • Pietikainen, M.1    Ojala, T.2    Xu, Z.3
  • 16
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • M. Varma, and A. Zisserman A statistical approach to texture classification from single images International Journal of Computer Vision 62 1-2 2005 61 81
    • (2005) International Journal of Computer Vision , vol.62 , Issue.12 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 18
    • 52049095736 scopus 로고    scopus 로고
    • Discriminative cue integration for medical image annotation
    • T. Tommasi, F. Orabona, and B. Caputo Discriminative cue integration for medical image annotation Pattern Recognition Letters 29 15 2008 1996 2002
    • (2008) Pattern Recognition Letters , vol.29 , Issue.15 , pp. 1996-2002
    • Tommasi, T.1    Orabona, F.2    Caputo, B.3
  • 20
    • 69649107067 scopus 로고    scopus 로고
    • Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells
    • R. Hiemann et al. Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells Autoimmunity Reviews 9 1 2009 17 22
    • (2009) Autoimmunity Reviews , vol.9 , Issue.1 , pp. 17-22
    • Hiemann, R.1
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe Distinctive image features from scale-invariant keypoints International Journal of Computer Vision 60 2 2004 91 110
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 24
    • 84867840628 scopus 로고    scopus 로고
    • Pairwise rotation invariant co-occurrence local binary pattern
    • A. Fitzgibbon, Springer Berlin Heidelberg
    • X. Qi et al. Pairwise Rotation Invariant Co-occurrence Local Binary Pattern A. Fitzgibbon, Computer Vision - ECCV 2012 vol. 7577 2012 Springer Berlin Heidelberg 158 171
    • (2012) Computer Vision - ECCV 2012 , vol.7577 , pp. 158-171
    • Qi, X.1
  • 25
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity- based classifiers
    • E. Pekalska, R.P.W. Duin, and P. Paclik Prototype selection for dissimilarity- based classifiers Pattern Recognition 39 2006 189 208
    • (2006) Pattern Recognition , vol.39 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclik, P.3
  • 27
    • 85172648840 scopus 로고    scopus 로고
    • Collaborative sparse representation in dissimilarity space for classification of visual information
    • In Press
    • I. Theodorakopoulos, et al., Collaborative sparse representation in dissimilarity space for classification of visual information, in: Proceedings of ISVC 2013, Springer Berlin Heidelberg, 2013 (In Press).
    • (2013) Proceedings of ISVC 2013, Springer Berlin Heidelberg
    • Theodorakopoulos, I.1
  • 30
    • 78149343905 scopus 로고    scopus 로고
    • Kernel sparse representation for image classification and face recognition
    • S. Gao, I.W.H. Tsang, and L.T. Chia Kernel sparse representation for image classification and face recognition Lecture Notes in Computer Science 6314 2010 1 14
    • (2010) Lecture Notes in Computer Science , vol.6314 , pp. 1-14
    • Gao, S.1    Tsang, I.W.H.2    Chia, L.T.3
  • 31
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing non-zero variables or insatisfied relations in linear systems
    • E. and V. Kann On the approximability of minimizing non-zero variables or insatisfied relations in linear systems Theoretical Computer Science 209 1998 237 260
    • (1998) Theoretical Computer Science , vol.209 , pp. 237-260
    • Kann, E.A.V.1
  • 32
  • 33
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal L1-Norm solution is also the sparsest solution
    • D.L. Dohono For most large underdetermined systems of linear equations the minimal L1-Norm solution is also the sparsest solution Communications on Pure and Applied Mathematics 59 2006 797 829
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , pp. 797-829
    • Dohono, D.L.1
  • 35
    • 61849103486 scopus 로고    scopus 로고
    • Sparse coding neural gas: Learning of overcomplete data representations
    • K. Labusch, E. Barth, and T. Martinetz Sparse coding neural gas: learning of overcomplete data representations Neurocomputing 72 2009 1547 1555
    • (2009) Neurocomputing , vol.72 , pp. 1547-1555
    • Labusch, K.1    Barth, E.2    Martinetz, T.3
  • 36
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries, image processing
    • M. Elad, and M. Aharon Image denoising via sparse and redundant representations over learned dictionaries, image processing IEEE Transactions on Image Processing 15 2006 3736 3745
    • (2006) IEEE Transactions on Image Processing , vol.15 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 37
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P.O. Hoyer Non-negative matrix factorization with sparseness constraints Journal of Machine Learning Research 5 2004 1457 1469
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 38
    • 84863011302 scopus 로고    scopus 로고
    • Sparse representation or collaborative representation: Which helps face recognition?
    • L. Zhag, M. Yang, and X. Feng Sparse representation or collaborative representation: which helps face recognition? International Conference on Computer Vision 2011 471 478
    • (2011) International Conference on Computer Vision , pp. 471-478
    • Zhag, L.1    Yang, M.2    Feng, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.