메뉴 건너뛰기




Volumn 18, Issue 3, 2014, Pages 591-604

Weakly supervised histopathology cancer image segmentation and classification

Author keywords

Classification; Clustering; Histopathology image; Image segmentation; Multiple instance learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); CYTOLOGY; DISEASES; IMAGE CLASSIFICATION; LEARNING SYSTEMS; MEDICAL IMAGE PROCESSING; TISSUE;

EID: 84896123432     PISSN: 13618415     EISSN: 13618423     Source Type: Journal    
DOI: 10.1016/j.media.2014.01.010     Document Type: Article
Times cited : (307)

References (66)
  • 1
    • 77954672917 scopus 로고    scopus 로고
    • Rotation invariant image description with local binary pattern histogram fourier features
    • Scandinavian Conference on Image Analysis.
    • Ahonen, T., Matas, J., He, C., Pietikäinen, M., 2009. Rotation invariant image description with local binary pattern histogram fourier features. In: Scandinavian Conference on Image Analysis.
    • (2009)
    • Ahonen, T.1    Matas, J.2    He, C.3    Pietikäinen, M.4
  • 3
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • Advances in Neural Information Processing Systems.
    • Andrews, S., Tsochantaridis, I., Hofmann, T., 2003. Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems.
    • (2003)
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 6
    • 84885591081 scopus 로고    scopus 로고
    • Simultaneous learning and alignment: multi-instance and multi-pose learning
    • European Conference on Computer Vision Workshop on Faces in Real-Life Images.
    • Babenko, B., Dollár, P., Tu, Z., Belongie, S., 2008. Simultaneous learning and alignment: multi-instance and multi-pose learning. In: European Conference on Computer Vision Workshop on Faces in Real-Life Images.
    • (2008)
    • Babenko, B.1    Dollár, P.2    Tu, Z.3    Belongie, S.4
  • 9
    • 78049390028 scopus 로고    scopus 로고
    • Object- and Spatial-Level Quantitative Analysis of Multispectral Histopathology Images for Detection and Characterization of Cancer
    • Ph.D. thesis. University of California, Santa Barbara.
    • Boucheron, L.E., 2008. Object- and Spatial-Level Quantitative Analysis of Multispectral Histopathology Images for Detection and Characterization of Cancer. Ph.D. thesis. University of California, Santa Barbara.
    • (2008)
    • Boucheron, L.E.1
  • 10
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • Dietterich T., Lathrop R., Lozano-Pérez T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1997, 89:31-71.
    • (1997) Artif. Intell. , vol.89 , pp. 31-71
    • Dietterich, T.1    Lathrop, R.2    Lozano-Pérez, T.3
  • 11
    • 70450200878 scopus 로고    scopus 로고
    • Multiple component learning for object detection
    • European Conference on Computer Vision.
    • Dollár, P., Babenko, B., Belongie, S., Perona, P., Tu, Z., 2008. Multiple component learning for object detection. In: European Conference on Computer Vision.
    • (2008)
    • Dollár, P.1    Babenko, B.2    Belongie, S.3    Perona, P.4    Tu, Z.5
  • 13
    • 39749155907 scopus 로고    scopus 로고
    • Multiple instance learning algorithms for computer aided diagnosis
    • Dundar M., Fung G., Krishnapuram B., Rao B. Multiple instance learning algorithms for computer aided diagnosis. IEEE Trans. Biomed. Eng. 2008, 55:1005-1015.
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , pp. 1005-1015
    • Dundar, M.1    Fung, G.2    Krishnapuram, B.3    Rao, B.4
  • 14
    • 78149479937 scopus 로고    scopus 로고
    • A multiple instance learning approach toward optimal classification of pathology slides
    • International Conference on Pattern Recognition
    • Dundar, M., Badve, S., Raykar, V., Jain, R., Sertel, O., Gurcan, M., 2010. A multiple instance learning approach toward optimal classification of pathology slides. In: International Conference on Pattern Recognition, pp. 2732-2735.
    • (2010) , pp. 2732-2735
    • Dundar, M.1    Badve, S.2    Raykar, V.3    Jain, R.4    Sertel, O.5    Gurcan, M.6
  • 16
    • 84921069139 scopus 로고    scopus 로고
    • The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results
    • Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A., 2009. The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results. <>. http://www.pascal-network.org/challenges/VOC/voc2009/workshop/index.html.
    • (2009)
    • Everingham, M.1    Van Gool, L.2    Williams, C.K.I.3    Winn, J.4    Zisserman, A.5
  • 18
    • 84860601695 scopus 로고    scopus 로고
    • Multiple instance algorithms for computer aided diagnosis
    • Advances in Neural Information Processing Systems 19 (NIPS 2006), Vancouver, CA
    • Fung, G., Dundar, M., Krishnapuram, B., Rao, B., 2006. Multiple instance algorithms for computer aided diagnosis. In: Advances in Neural Information Processing Systems 19 (NIPS 2006), Vancouver, CA, pp. 1015-1021.
    • (2006) , pp. 1015-1021
    • Fung, G.1    Dundar, M.2    Krishnapuram, B.3    Rao, B.4
  • 19
    • 84864047275 scopus 로고    scopus 로고
    • Multiple instance learning for computer aided diagnosis
    • Advances in Neural Information Processing Systems
    • Fung, G., Dundar, M., Krishnapuram, B., Rao, R., 2007. Multiple instance learning for computer aided diagnosis. In: Advances in Neural Information Processing Systems, pp. 425-432.
    • (2007) , pp. 425-432
    • Fung, G.1    Dundar, M.2    Krishnapuram, B.3    Rao, R.4
  • 20
    • 84896118599 scopus 로고    scopus 로고
    • Weakly supervised object recognition and localization with stable segmentations
    • European Conference on Computer Vision.
    • Galleguillos, C., Babenko, B., Rabinovich, A., Belongie, S., 2008. Weakly supervised object recognition and localization with stable segmentations. In: European Conference on Computer Vision.
    • (2008)
    • Galleguillos, C.1    Babenko, B.2    Rabinovich, A.3    Belongie, S.4
  • 21
    • 4444252785 scopus 로고    scopus 로고
    • Multi-instance kernels
    • International Conference on Machine Learning.
    • Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J., 2002. Multi-instance kernels. In: International Conference on Machine Learning.
    • (2002)
    • Gärtner, T.1    Flach, P.A.2    Kowalczyk, A.3    Smola, A.J.4
  • 22
    • 67649515593 scopus 로고    scopus 로고
    • Automatic classification for pathological prostate images based on fractal analysis
    • Huang P.W., Lee C.H. Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Med. Imag. 2009, 28:1037-1050.
    • (2009) IEEE Trans. Med. Imag. , vol.28 , pp. 1037-1050
    • Huang, P.W.1    Lee, C.H.2
  • 23
    • 70450164149 scopus 로고    scopus 로고
    • Learning a distance metric from multi-instance multi-label data
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Jin, R., Wang, S., Zhou, Z.H., 2009. Learning a distance metric from multi-instance multi-label data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 896-902.
    • (2009) , pp. 896-902
    • Jin, R.1    Wang, S.2    Zhou, Z.H.3
  • 24
    • 0011858375 scopus 로고
    • Integrated segmentation and recognition of hand-printed numerals
    • Advances in Neural Information Processing Systems
    • Keeler, J.D., Rumelhart, D.E., Leow, W.K., 1990. Integrated segmentation and recognition of hand-printed numerals. In: Advances in Neural Information Processing Systems, pp. 285-290.
    • (1990) , pp. 285-290
    • Keeler, J.D.1    Rumelhart, D.E.2    Leow, W.K.3
  • 25
    • 59349094544 scopus 로고    scopus 로고
    • Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation
    • Kong J., Sertel O., Shimada H., Boyer K.L., Saltz J.H., Gurcan M.N. Computer-aided evaluation of neuroblastoma on whole-slide histology images: classifying grade of neuroblastic differentiation. Pattern Recogn. 2009, 42:1080-1092.
    • (2009) Pattern Recogn. , vol.42 , pp. 1080-1092
    • Kong, J.1    Sertel, O.2    Shimada, H.3    Boyer, K.L.4    Saltz, J.H.5    Gurcan, M.N.6
  • 26
    • 80052292123 scopus 로고    scopus 로고
    • Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting
    • Kong H., Gurcan M., Belkacem-Boussaid K. Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting. IEEE Trans. Med. Imag. 2011, 30:1661-1677.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , pp. 1661-1677
    • Kong, H.1    Gurcan, M.2    Belkacem-Boussaid, K.3
  • 27
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • International Conference on Machine Learning
    • Lafferty, J.D., McCallum, A., Pereira, F.C.N., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp. 282-292.
    • (2001) , pp. 282-292
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 28
    • 0036650721 scopus 로고    scopus 로고
    • Cooperation of color pixel classification schemes and color watershed: a study for microscopic images
    • Lezoray O., Cardot H. Cooperation of color pixel classification schemes and color watershed: a study for microscopic images. IEEE Trans. Image Process. 2002, 11:783-789.
    • (2002) IEEE Trans. Image Process. , vol.11 , pp. 783-789
    • Lezoray, O.1    Cardot, H.2
  • 29
    • 38149068271 scopus 로고    scopus 로고
    • Computer aided detection of pulmonary embolism with tobogganing and multiple instance classification in CT pulmonary angiography
    • International Conference on Information Processing in Medical Imaging
    • Liang, J., Bi, J., 2007. Computer aided detection of pulmonary embolism with tobogganing and multiple instance classification in CT pulmonary angiography. In: International Conference on Information Processing in Medical Imaging, pp. 630-641.
    • (2007) , pp. 630-641
    • Liang, J.1    Bi, J.2
  • 30
    • 84883841476 scopus 로고    scopus 로고
    • Lesion-specific coronary artery calcium quantification for predicting cardiac event with multiple instance support vector machines
    • International Conference on Medical Image Computing and Computer Assisted Intervention
    • Liu, Q., Qian, Z., Marvasty, I., Rinehart, S., Voros, S., Metaxas, D., 2010. Lesion-specific coronary artery calcium quantification for predicting cardiac event with multiple instance support vector machines. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 484-492.
    • (2010) , pp. 484-492
    • Liu, Q.1    Qian, Z.2    Marvasty, I.3    Rinehart, S.4    Voros, S.5    Metaxas, D.6
  • 31
    • 84860624328 scopus 로고    scopus 로고
    • Efficient unsupervised learning for localization and detection in object categories
    • Advances in Neural Information Processing Systems.
    • Loeff, N., Arora, H., Sorokin, A., Forsyth, D.A., 2005. Efficient unsupervised learning for localization and detection in object categories. In: Advances in Neural Information Processing Systems.
    • (2005)
    • Loeff, N.1    Arora, H.2    Sorokin, A.3    Forsyth, D.A.4
  • 32
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60:91-110.
    • (2004) Int. J. Comput. Vis. , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 33
    • 80052892770 scopus 로고    scopus 로고
    • Effective 3D object detection and regression using probabilistic segmentation features in CT images
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Lu, L., Bi, J., Wolf, M., Salganicoff, M., 2011. Effective 3D object detection and regression using probabilistic segmentation features in CT images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1049-1056.
    • (2011) , pp. 1049-1056
    • Lu, L.1    Bi, J.2    Wolf, M.3    Salganicoff, M.4
  • 34
    • 77954650208 scopus 로고    scopus 로고
    • Digital pathology image analysis: opportunities and challenges
    • Madabhushi A. Digital pathology image analysis: opportunities and challenges. Imag. Med. 2009, 1:7-10.
    • (2009) Imag. Med. , vol.1 , pp. 7-10
    • Madabhushi, A.1
  • 35
    • 0002858869 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • Advances in Neural Information Processing Systems.
    • Maron, O., Lozano-Pérez, T., 1997. A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems.
    • (1997)
    • Maron, O.1    Lozano-Pérez, T.2
  • 36
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • Advances in Neural Information Processing Systems.
    • Mason, L., Baxter, J., Bartlett, P., Frean, M., 2000. Boosting algorithms as gradient descent. In: Advances in Neural Information Processing Systems.
    • (2000)
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 38
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala T., Pietikäinen M., Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24:971-987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 39
    • 79952171050 scopus 로고    scopus 로고
    • Domain-specific image analysis for cervical neoplasia detection based on conditional random fields
    • Park S., Sargent D., Lieberman R., Gustafsson U. Domain-specific image analysis for cervical neoplasia detection based on conditional random fields. IEEE Trans. Med. Imag. 2011, 30:867-878.
    • (2011) IEEE Trans. Med. Imag. , vol.30 , pp. 867-878
    • Park, S.1    Sargent, D.2    Lieberman, R.3    Gustafsson, U.4
  • 40
    • 0034291204 scopus 로고    scopus 로고
    • A parametric texture model based on joint statistics of complex wavelet coefficients
    • Portilla J., Simoncellt E.P. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 2000, 40:49-71.
    • (2000) Int. J. Comput. Vis. , vol.40 , pp. 49-71
    • Portilla, J.1    Simoncellt, E.P.2
  • 41
    • 0346231065 scopus 로고    scopus 로고
    • Multi instance neural networks
    • ICML, Workshop on Attribute-Value and Relational Learning.
    • Ramon, J., Raedt, L.D., 2000. Multi instance neural networks. In: ICML, Workshop on Attribute-Value and Relational Learning.
    • (2000)
    • Ramon, J.1    Raedt, L.D.2
  • 42
    • 56449092895 scopus 로고    scopus 로고
    • Bayesian multiple instance learning: automatic feature selection and inductive transfer
    • Proceedings of the 25th International Conference on Machine Learning (ICML 2008), Helsinki
    • Raykar, V.C., Krishnapuram, B., Bi, J., Dundar, M., Rao, R.B., 2008. Bayesian multiple instance learning: automatic feature selection and inductive transfer. In: Proceedings of the 25th International Conference on Machine Learning (ICML 2008), Helsinki, pp. 808-815.
    • (2008) , pp. 808-815
    • Raykar, V.C.1    Krishnapuram, B.2    Bi, J.3    Dundar, M.4    Rao, R.B.5
  • 43
    • 59349090297 scopus 로고    scopus 로고
    • Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development
    • Sertel O., Kong J., Shimada H., Catalyurek U.V., Saltz J.H., Gurcan M.N. Computer-aided prognosis of neuroblastoma on whole-slide images: classification of stromal development. Pattern Recogn. 2009, 42:1093-1103.
    • (2009) Pattern Recogn. , vol.42 , pp. 1093-1103
    • Sertel, O.1    Kong, J.2    Shimada, H.3    Catalyurek, U.V.4    Saltz, J.H.5    Gurcan, M.N.6
  • 44
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Shotton, J., Johnson, M., Cipolla, R., 2008. Semantic texton forests for image categorization and segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8.
    • (2008) , pp. 1-8
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 47
    • 59149092778 scopus 로고    scopus 로고
    • Graph-based tools for microscopic cellular image segmentation
    • Ta V.T., Lézoray O., Elmoataz A., Schüpp S. Graph-based tools for microscopic cellular image segmentation. Pattern Recogn. 2009, 42:1113-1125.
    • (2009) Pattern Recogn. , vol.42 , pp. 1113-1125
    • Ta, V.T.1    Lézoray, O.2    Elmoataz, A.3    Schüpp, S.4
  • 48
    • 72449187118 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • Advances in Neural Information Processing Systems.
    • Taskar, B., Guestrin, C., Koller, D., 2003. Max-margin Markov networks. In: Advances in Neural Information Processing Systems.
    • (2003)
    • Taskar, B.1    Guestrin, C.2    Koller, D.3
  • 49
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3D brain image segmentation
    • Tu Z., Bai X. Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 21:1744-1757.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , pp. 1744-1757
    • Tu, Z.1    Bai, X.2
  • 51
    • 77953196456 scopus 로고    scopus 로고
    • Multiple kernels for object detection
    • International Conference on Computer Vision
    • Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A., 2009. Multiple kernels for object detection. In: International Conference on Computer Vision, pp. 606-613.
    • (2009) , pp. 606-613
    • Vedaldi, A.1    Gulshan, V.2    Varma, M.3    Zisserman, A.4
  • 52
    • 77955986468 scopus 로고    scopus 로고
    • Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning
    • IEEE Conference on Computer Vision and Pattern Recognition.
    • Vezhnevets, A., Buhmann, J.M., 2010. Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning. In: IEEE Conference on Computer Vision and Pattern Recognition.
    • (2010)
    • Vezhnevets, A.1    Buhmann, J.M.2
  • 53
    • 51949096901 scopus 로고    scopus 로고
    • Keywords to visual categories: multiple-instance learning for weakly supervised object categorization
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Vijayanarasimhan, S., Grauman, K., 2008. Keywords to visual categories: multiple-instance learning for weakly supervised object categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8.
    • (2008) , pp. 1-8
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 54
  • 55
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • Advances in Neural Information Processing Systems.
    • Viola, P.A., Platt, J., Zhang, C., 2005. Multiple instance boosting for object detection. In: Advances in Neural Information Processing Systems.
    • (2005)
    • Viola, P.A.1    Platt, J.2    Zhang, C.3
  • 56
    • 33746609417 scopus 로고    scopus 로고
    • Contextual modeling of functional MR images with conditional random fields
    • Wang Y., Rajapakse J.C. Contextual modeling of functional MR images with conditional random fields. IEEE Trans. Med. Imag. 2006, 25:804-812.
    • (2006) IEEE Trans. Med. Imag. , vol.25 , pp. 804-812
    • Wang, Y.1    Rajapakse, J.C.2
  • 57
    • 0141596676 scopus 로고    scopus 로고
    • Solving multiple-instance problem: a lazy learning approach
    • International Conference on Machine Learning.
    • Wang, J., Zucker, Jean-Daniel, 2000. Solving multiple-instance problem: a lazy learning approach. In: International Conference on Machine Learning.
    • (2000)
    • Wang, J.1    Jean-Daniel, Z.2
  • 58
    • 84872920888 scopus 로고    scopus 로고
    • Contexts-constrained multiple instance learning for histopathology image segmentation
    • International Conference on Medical Image Computing and Computer Assisted Intervention.
    • Xu, Y., Zhang, J., Chang, E.I.C., Lai, M., Tu, Z., 2012a. Contexts-constrained multiple instance learning for histopathology image segmentation. In: International Conference on Medical Image Computing and Computer Assisted Intervention.
    • (2012)
    • Xu, Y.1    Zhang, J.2    Chang, E.I.C.3    Lai, M.4    Tu, Z.5
  • 59
    • 84866665353 scopus 로고    scopus 로고
    • Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Xu, Y., Zhu, J.Y., Chang, E., Tu, Z., 2012b. Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 964-971.
    • (2012) , pp. 964-971
    • Xu, Y.1    Zhu, J.Y.2    Chang, E.3    Tu, Z.4
  • 60
    • 79551685885 scopus 로고    scopus 로고
    • Automatic image analysis of histopathology specimens using concave vertex graph
    • International Conference on Medical Image Computing and Computer Assisted Intervention
    • Yang, L., Tuzel, O., Meer, P., Foran, D., 2008. Automatic image analysis of histopathology specimens using concave vertex graph. In: International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 833-841.
    • (2008) , pp. 833-841
    • Yang, L.1    Tuzel, O.2    Meer, P.3    Foran, D.4
  • 61
    • 51949083216 scopus 로고    scopus 로고
    • Joint multi-label multi-instance learning for image classification
    • IEEE Conference on Computer Vision and Pattern Recognition
    • Zha, Z.J., Mei, T., Wang, J., Qi, G.J., Wang, Z., 2008. Joint multi-label multi-instance learning for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-8.
    • (2008) , pp. 1-8
    • Zha, Z.J.1    Mei, T.2    Wang, J.3    Qi, G.J.4    Wang, Z.5
  • 62
    • 0012349465 scopus 로고    scopus 로고
    • EM-DD: an improved multiple-instance learning technique
    • Advances in Neural Information Processing Systems
    • Zhang, Q., Goldman, S.A., 2001. EM-DD: an improved multiple-instance learning technique. In: Advances in Neural Information Processing Systems, pp. 1-8.
    • (2001) , pp. 1-8
    • Zhang, Q.1    Goldman, S.A.2
  • 63
    • 68149124491 scopus 로고    scopus 로고
    • Multi-instance clustering with applications to multi-instance prediction
    • Zhang M.L., Zhou Z.H. Multi-instance clustering with applications to multi-instance prediction. Appl. Intell. 2009, 31:47-68.
    • (2009) Appl. Intell. , vol.31 , pp. 47-68
    • Zhang, M.L.1    Zhou, Z.H.2
  • 64
    • 78751693866 scopus 로고    scopus 로고
    • M3IC: maximum margin multiple instance clustering
    • International Joint Conference on Artificial Intelligence.
    • Zhang, D., Wang, F., Si, L., Li, T., 2009. M3IC: maximum margin multiple instance clustering. In: International Joint Conference on Artificial Intelligence.
    • (2009)
    • Zhang, D.1    Wang, F.2    Si, L.3    Li, T.4
  • 65
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multilabel learning with application to scene classification
    • In: Advances in Neural Information Processing Systems.
    • Zhou, Z.H., Zhang, M.L., 2007. Multi-instance multilabel learning with application to scene classification. In: Advances in Neural Information Processing Systems.
    • (2007)
    • Zhou, Z.H.1    Zhang, M.L.2
  • 66
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • Computer Science TR 1530, University of Wisconsin-Madison.
    • Zhu, X., 2008. Semi-Supervised Learning Literature Survey. Computer Science TR 1530, University of Wisconsin-Madison.
    • (2008)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.