메뉴 건너뛰기




Volumn , Issue , 2012, Pages 964-971

Multiple clustered instance learning for histopathology cancer image classification, segmentation and clustering

Author keywords

[No Author keywords available]

Indexed keywords

ABNORMAL PATTERNS; CANCER CELLS; CANCER TISSUES; COLON CANCER; INTEGRATED FRAMEWORKS; LEARNING METHODS; MULTIPLE-INSTANCE LEARNING; SEGMENTATION AND CLUSTERING;

EID: 84866665353     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6247772     Document Type: Conference Paper
Times cited : (108)

References (28)
  • 2
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • 1, 5
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002. 1, 5
    • (2002) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 4
    • 35148890331 scopus 로고    scopus 로고
    • Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure
    • 2
    • J. Bi and J. Liang. Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure. In CVPR, 2007. 2
    • (2007) CVPR
    • Bi, J.1    Liang, J.2
  • 8
    • 78149479937 scopus 로고    scopus 로고
    • A multiple instance learning approach toward optimal classification of pathology slides
    • 2
    • M. Dundar, S. Badve, V. Raykar, R. Jain, O. Sertel, and M. Gurcan. A multiple instance learning approach toward optimal classification of pathology slides. In ICPR, 2010. 2
    • (2010) ICPR
    • Dundar, M.1    Badve, S.2    Raykar, V.3    Jain, R.4    Sertel, O.5    Gurcan, M.6
  • 10
    • 85144878880 scopus 로고    scopus 로고
    • Multiple instance learning for computer aided diagnosis
    • 2
    • G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao. Multiple instance learning for computer aided diagnosis. In NIPS, 2006. 2
    • (2006) NIPS
    • Fung, G.1    Dundar, M.2    Krishnapuram, B.3    Rao, R.B.4
  • 11
    • 67649515593 scopus 로고    scopus 로고
    • Automatic classification for pathological prostate images based on fractal analysis
    • 1, 2, 5
    • P.-W. Huang and C.-H. Lee. Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Medical Imaging, 28(7):1037-1050, 2009. 1, 2, 5
    • (2009) IEEE Trans. Medical Imaging , vol.28 , Issue.7 , pp. 1037-1050
    • Huang, P.-W.1    Lee, C.-H.2
  • 12
    • 59349094544 scopus 로고    scopus 로고
    • Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation
    • 1, 2
    • J. Kong, O. Sertel, H. Shimada, K. L. Boyer, J. H. Saltz, and M. N. Gurcan. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recogn., 42(6):1080-1092, 2009. 1, 2
    • (2009) Pattern Recogn. , vol.42 , Issue.6 , pp. 1080-1092
    • Kong, J.1    Sertel, O.2    Shimada, H.3    Boyer, K.L.4    Saltz, J.H.5    Gurcan, M.N.6
  • 13
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 5
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60:91-110, 2004. 5
    • (2004) Int. J. Comput. Vision , vol.60 , pp. 91-110
    • Lowe, D.G.1
  • 14
    • 80052892770 scopus 로고    scopus 로고
    • Effective 3d object detection and regression using probabilistic segmentation features in ct images
    • 2
    • L. Lu, J. Bi, M. Wolf, and M. Salganicoff. Effective 3d object detection and regression using probabilistic segmentation features in ct images. In CVPR, 2011. 2
    • (2011) CVPR
    • Lu, L.1    Bi, J.2    Wolf, M.3    Salganicoff, M.4
  • 15
    • 77954650208 scopus 로고    scopus 로고
    • Digital pathology image analysis: Opportunities and challenges
    • 1
    • A. Madabhushi. Digital pathology image analysis: opportunities and challenges. Imaging in Medicine, 1(1):7-10, 2009. 1
    • (2009) Imaging in Medicine , vol.1 , Issue.1 , pp. 7-10
    • Madabhushi, A.1
  • 16
    • 0002858869 scopus 로고    scopus 로고
    • A framework for multiple-instance learning
    • 1
    • O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In NIPS, 1997. 1
    • (1997) NIPS
    • Maron, O.1    Lozano-Pérez, T.2
  • 17
    • 84898978212 scopus 로고    scopus 로고
    • Boosting algorithms as gradient descent
    • 3, 5, 6
    • L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In NIPS, 2000. 3, 5, 6
    • (2000) NIPS
    • Mason, L.1    Baxter, J.2    Bartlett, P.3    Frean, M.4
  • 18
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • 5
    • T. Ojala, M. Pietikinen, and T. Menp. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI, 24(7):971-987, 2002. 5
    • (2002) IEEE Trans. PAMI , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikinen, M.2    Menp, T.3
  • 19
    • 79952171050 scopus 로고    scopus 로고
    • Domain-specific image analysis for cervical neoplasia detection based on conditional random fields
    • 1
    • S. Park, D. Sargent, R. Lieberman, and U. Gustafsson. Domain-specific image analysis for cervical neoplasia detection based on conditional random fields. IEEE Trans. Medical Imaging, 30(3):867 -78, 2011. 1
    • (2011) IEEE Trans. Medical Imaging , vol.30 , Issue.3 , pp. 867-878
    • Park, S.1    Sargent, D.2    Lieberman, R.3    Gustafsson, U.4
  • 22
    • 77956051102 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks and 3d brain image segmentation
    • 1
    • Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. PAMI, 21(10):1744-1757, 2010. 1
    • (2010) IEEE Trans. PAMI , vol.21 , Issue.10 , pp. 1744-1757
    • Tu, Z.1    Bai, X.2
  • 24
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 1, 2, 3, 5, 6
    • P. A. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2005. 1, 2, 3, 5, 6
    • (2005) NIPS
    • Viola, P.A.1    Platt, J.2    Zhang, C.3
  • 25
    • 84455192576 scopus 로고    scopus 로고
    • Joint multi-label multiinstance learning for image classification
    • 2
    • Z.-J. Zha, T. Mei, J. Wang, G.-J. Qi, and Z. Wang. Joint multi-label multiinstance learning for image classification. In CVPR, 2008. 2
    • (2008) CVPR
    • Zha, Z.-J.1    Mei, T.2    Wang, J.3    Qi, G.-J.4    Wang, Z.5
  • 26
    • 78751693866 scopus 로고    scopus 로고
    • M3ic: Maximum margin multiple instance clustering
    • 1, 2
    • D. Zhang, F.Wang, L. Si, and T. Li. M3ic: Maximum margin multiple instance clustering. In IJCAI, 2009. 1, 2
    • (2009) IJCAI
    • Zhang, D.1    Wang, F.2    Si, L.3    Li, T.4
  • 27
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multilabel learning with application to scene classification
    • 2
    • Z.-H. Zhou and M.-L. Zhang. Multi-instance multilabel learning with application to scene classification. In NIPS, 2007. 2
    • (2007) NIPS
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.