-
1
-
-
77649145914
-
Color graphs for automated cancer diagnosis and grading
-
2
-
D. Altunbay, C. Cigir, C. Sokmensuer, and C. Gunduz-Demir. Color graphs for automated cancer diagnosis and grading. IEEE Transaction on Biomedical Engineering, 57(3):665-674, 2010. 2
-
(2010)
IEEE Transaction on Biomedical Engineering
, vol.57
, Issue.3
, pp. 665-674
-
-
Altunbay, D.1
Cigir, C.2
Sokmensuer, C.3
Gunduz-Demir, C.4
-
2
-
-
85141266799
-
Support vector machines for multiple-instance learning
-
1, 5
-
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2002. 1, 5
-
(2002)
NIPS
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
3
-
-
84885591081
-
Simultaneous learning and alignment: Multi-instance and multi-pose learning
-
1, 2, 3
-
B. Babenko, P. Dollár, Z. Tu, and S. Belongie. Simultaneous learning and alignment: Multi-instance and multi-pose learning. In ECCV workshop on Faces in Real-Life Images, 2008. 1, 2, 3
-
(2008)
ECCV Workshop on Faces in Real-Life Images
-
-
Babenko, B.1
Dollár, P.2
Tu, Z.3
Belongie, S.4
-
4
-
-
35148890331
-
Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure
-
2
-
J. Bi and J. Liang. Multiple instance learning of pulmonary embolism detection with geodesic distance along vascular structure. In CVPR, 2007. 2
-
(2007)
CVPR
-
-
Bi, J.1
Liang, J.2
-
6
-
-
70450200878
-
Multiple component learning for object detection
-
1, 2
-
P. Dollár, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple component learning for object detection. In ECCV, 2008. 1, 2
-
(2008)
ECCV
-
-
Dollár, P.1
Babenko, B.2
Belongie, S.3
Perona, P.4
Tu, Z.5
-
7
-
-
0003922190
-
-
Wiley-Interscience, 2nd edition, Nov. 1, 5
-
R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-Interscience, 2nd edition, Nov. 2001. 1, 5
-
(2001)
Pattern Classification (2nd Edition)
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
8
-
-
78149479937
-
A multiple instance learning approach toward optimal classification of pathology slides
-
2
-
M. Dundar, S. Badve, V. Raykar, R. Jain, O. Sertel, and M. Gurcan. A multiple instance learning approach toward optimal classification of pathology slides. In ICPR, 2010. 2
-
(2010)
ICPR
-
-
Dundar, M.1
Badve, S.2
Raykar, V.3
Jain, R.4
Sertel, O.5
Gurcan, M.6
-
9
-
-
0036489323
-
Fractal analysis in the detection of colonic cancer images
-
1, 5, 6
-
A. Esgiar, R. Naguib, B. Sharif, M. Bennett, and A. Murray. Fractal analysis in the detection of colonic cancer images. IEEE Transaction on Information Technology in Biomedicine, 6(1):54-58, 2002. 1, 5, 6
-
(2002)
IEEE Transaction on Information Technology in Biomedicine
, vol.6
, Issue.1
, pp. 54-58
-
-
Esgiar, A.1
Naguib, R.2
Sharif, B.3
Bennett, M.4
Murray, A.5
-
10
-
-
85144878880
-
Multiple instance learning for computer aided diagnosis
-
2
-
G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao. Multiple instance learning for computer aided diagnosis. In NIPS, 2006. 2
-
(2006)
NIPS
-
-
Fung, G.1
Dundar, M.2
Krishnapuram, B.3
Rao, R.B.4
-
11
-
-
67649515593
-
Automatic classification for pathological prostate images based on fractal analysis
-
1, 2, 5
-
P.-W. Huang and C.-H. Lee. Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Medical Imaging, 28(7):1037-1050, 2009. 1, 2, 5
-
(2009)
IEEE Trans. Medical Imaging
, vol.28
, Issue.7
, pp. 1037-1050
-
-
Huang, P.-W.1
Lee, C.-H.2
-
12
-
-
59349094544
-
Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation
-
1, 2
-
J. Kong, O. Sertel, H. Shimada, K. L. Boyer, J. H. Saltz, and M. N. Gurcan. Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation. Pattern Recogn., 42(6):1080-1092, 2009. 1, 2
-
(2009)
Pattern Recogn.
, vol.42
, Issue.6
, pp. 1080-1092
-
-
Kong, J.1
Sertel, O.2
Shimada, H.3
Boyer, K.L.4
Saltz, J.H.5
Gurcan, M.N.6
-
13
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
5
-
D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60:91-110, 2004. 5
-
(2004)
Int. J. Comput. Vision
, vol.60
, pp. 91-110
-
-
Lowe, D.G.1
-
14
-
-
80052892770
-
Effective 3d object detection and regression using probabilistic segmentation features in ct images
-
2
-
L. Lu, J. Bi, M. Wolf, and M. Salganicoff. Effective 3d object detection and regression using probabilistic segmentation features in ct images. In CVPR, 2011. 2
-
(2011)
CVPR
-
-
Lu, L.1
Bi, J.2
Wolf, M.3
Salganicoff, M.4
-
15
-
-
77954650208
-
Digital pathology image analysis: Opportunities and challenges
-
1
-
A. Madabhushi. Digital pathology image analysis: opportunities and challenges. Imaging in Medicine, 1(1):7-10, 2009. 1
-
(2009)
Imaging in Medicine
, vol.1
, Issue.1
, pp. 7-10
-
-
Madabhushi, A.1
-
16
-
-
0002858869
-
A framework for multiple-instance learning
-
1
-
O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In NIPS, 1997. 1
-
(1997)
NIPS
-
-
Maron, O.1
Lozano-Pérez, T.2
-
17
-
-
84898978212
-
Boosting algorithms as gradient descent
-
3, 5, 6
-
L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In NIPS, 2000. 3, 5, 6
-
(2000)
NIPS
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
18
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
5
-
T. Ojala, M. Pietikinen, and T. Menp. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. PAMI, 24(7):971-987, 2002. 5
-
(2002)
IEEE Trans. PAMI
, vol.24
, Issue.7
, pp. 971-987
-
-
Ojala, T.1
Pietikinen, M.2
Menp, T.3
-
19
-
-
79952171050
-
Domain-specific image analysis for cervical neoplasia detection based on conditional random fields
-
1
-
S. Park, D. Sargent, R. Lieberman, and U. Gustafsson. Domain-specific image analysis for cervical neoplasia detection based on conditional random fields. IEEE Trans. Medical Imaging, 30(3):867 -78, 2011. 1
-
(2011)
IEEE Trans. Medical Imaging
, vol.30
, Issue.3
, pp. 867-878
-
-
Park, S.1
Sargent, D.2
Lieberman, R.3
Gustafsson, U.4
-
20
-
-
36049014768
-
Hidden conditional random fields
-
2
-
A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell. Hidden conditional random fields. IEEE Trans. PAMI, 29(10):1848-1852, 2007. 2
-
(2007)
IEEE Trans. PAMI
, vol.29
, Issue.10
, pp. 1848-1852
-
-
Quattoni, A.1
Wang, S.2
Morency, L.3
Collins, M.4
Darrell, T.5
-
21
-
-
34948819236
-
Multifeature prostate cancer diagnosis and gleason grading of histological images
-
1, 2, 5 6
-
A. Tabesh, M. Teverovskiy, H.-Y. Pang, V. Kumar, D. Verbel, A. Kotsianti, and O. Saidi. Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Medical Imaging, 26(10):1366-78, 2007. 1, 2, 5, 6
-
(2007)
IEEE Trans. Medical Imaging
, vol.26
, Issue.10
, pp. 1366-1378
-
-
Tabesh, A.1
Teverovskiy, M.2
Pang, H.-Y.3
Kumar, V.4
Verbel, D.5
Kotsianti, A.6
Saidi, O.7
-
22
-
-
77956051102
-
Auto-context and its application to high-level vision tasks and 3d brain image segmentation
-
1
-
Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain image segmentation. IEEE Trans. PAMI, 21(10):1744-1757, 2010. 1
-
(2010)
IEEE Trans. PAMI
, vol.21
, Issue.10
, pp. 1744-1757
-
-
Tu, Z.1
Bai, X.2
-
23
-
-
77953196456
-
Multiple kernels for object detection
-
1, 5
-
A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection. In ICCV, 2009. 1, 5
-
(2009)
ICCV
-
-
Vedaldi, A.1
Gulshan, V.2
Varma, M.3
Zisserman, A.4
-
24
-
-
84864049528
-
Multiple instance boosting for object detection
-
1, 2, 3, 5, 6
-
P. A. Viola, J. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2005. 1, 2, 3, 5, 6
-
(2005)
NIPS
-
-
Viola, P.A.1
Platt, J.2
Zhang, C.3
-
25
-
-
84455192576
-
Joint multi-label multiinstance learning for image classification
-
2
-
Z.-J. Zha, T. Mei, J. Wang, G.-J. Qi, and Z. Wang. Joint multi-label multiinstance learning for image classification. In CVPR, 2008. 2
-
(2008)
CVPR
-
-
Zha, Z.-J.1
Mei, T.2
Wang, J.3
Qi, G.-J.4
Wang, Z.5
-
26
-
-
78751693866
-
M3ic: Maximum margin multiple instance clustering
-
1, 2
-
D. Zhang, F.Wang, L. Si, and T. Li. M3ic: Maximum margin multiple instance clustering. In IJCAI, 2009. 1, 2
-
(2009)
IJCAI
-
-
Zhang, D.1
Wang, F.2
Si, L.3
Li, T.4
-
27
-
-
84864028262
-
Multi-instance multilabel learning with application to scene classification
-
2
-
Z.-H. Zhou and M.-L. Zhang. Multi-instance multilabel learning with application to scene classification. In NIPS, 2007. 2
-
(2007)
NIPS
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
|