메뉴 건너뛰기




Volumn 21, Issue 3, 2017, Pages 803-813

Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted from Fundus Images

Author keywords

Correntropy; Empirical wavelet transform (EWT); Feature selection; Glaucoma; Least Squares support vector machine (LS SVM) classifier

Indexed keywords

EYE PROTECTION; FEATURE EXTRACTION; IMAGE COMPRESSION; OPHTHALMOLOGY; OPTICAL TOMOGRAPHY; SCANNING; SUPPORT VECTOR MACHINES; TOMOGRAPHY;

EID: 85019228808     PISSN: 21682194     EISSN: 21682208     Source Type: Journal    
DOI: 10.1109/JBHI.2016.2544961     Document Type: Article
Times cited : (230)

References (42)
  • 1
    • 84861643378 scopus 로고    scopus 로고
    • Data mining technique for automated diagnosis of glaucomausing higher order spectra and wavelet energy features
    • M. R. K. Mookiah, U. R. Acharya, C. M. Lim, A. Petznick, J. S. Suri, "Data mining technique for automated diagnosis of glaucomausing higher order spectra and wavelet energy features, " Knowl.-BasedSyst., vol. 33, pp. 73-82, 2012.
    • (2012) Knowl.-BasedSyst. , vol.33 , pp. 73-82
    • Mookiah, M.R.K.1    Acharya, U.R.2    Lim, C.M.3    Petznick, A.4    Suri, J.S.5
  • 2
    • 84908473395 scopus 로고    scopus 로고
    • Global prevalence of glaucoma and projections of glaucomaburden through 2040: A systematic review and meta-analysis
    • Y. C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, C.Y. Cheng, "Global prevalence of glaucoma and projections of glaucomaburden through 2040: A systematic review and meta-analysis, " Ophthalmology, vol. 121, no. 11, pp. 2081-2090, 2014.
    • (2014) Ophthalmology , vol.121 , Issue.11 , pp. 2081-2090
    • Tham, Y.C.1    Li, X.2    Wong, T.Y.3    Quigley, H.A.4    Aung, T.5    Cheng, C.Y.6
  • 3
    • 77951645182 scopus 로고    scopus 로고
    • Glaucoma risk index: Automated glaucoma detection from colorfundus images
    • R. Bock, J. Meier, L. G. Nyúl, J. Hornegger, G. Michelson, "Glaucoma risk index: Automated glaucoma detection from colorfundus images, " Med. Image Anal., vol. 14, no. 3, pp. 471-481, 2010.
    • (2010) Med. Image Anal. , vol.14 , Issue.3 , pp. 471-481
    • Bock, R.1    Meier, J.2    Nyúl, L.G.3    Hornegger, J.4    Michelson, G.5
  • 4
    • 84908489393 scopus 로고    scopus 로고
    • Family history is a strong risk factor for prevalent angleclosure in a south indian population
    • S. Kavitha, et al., "Family history is a strong risk factor for prevalent angleclosure in a south indian population, " Ophthalmology, vol. 121, no. 11, pp. 2091-2097, 2014.
    • (2014) Ophthalmology , vol.121 , Issue.11 , pp. 2091-2097
    • Kavitha, S.1
  • 6
    • 53149121028 scopus 로고    scopus 로고
    • The prevalence and types of glaucoma in Malay people:The Singapore Malay eye study
    • S. Y. Shen, et al., "The prevalence and types of glaucoma in Malay people:The Singapore Malay eye study, " Investigative Ophthalmol. Visual Sci., vol. 49, no. 9, pp. 3846-3851, 2008.
    • (2008) Investigative Ophthalmol. Visual Sci. , vol.49 , Issue.9 , pp. 3846-3851
    • Shen, S.Y.1
  • 7
    • 71549165160 scopus 로고    scopus 로고
    • Retinal image analysis for automated glaucoma risk evaluation
    • L. G. Nyúl, "Retinal image analysis for automated glaucoma risk evaluation, "Proc. SPIE, vol. 7497, pp. 1-9, 2009.
    • (2009) Proc. SPIE , vol.7497 , pp. 1-9
    • Nyúl, L.G.1
  • 8
    • 34247095651 scopus 로고    scopus 로고
    • Progress towards detection and characterisationof the optic disk in glaucoma and diabetic retinopathy
    • R. A. Gafar and T. Morris, "Progress towards detection and characterisationof the optic disk in glaucoma and diabetic retinopathy, " Informat. Health Soc. Care, vol. 32, no. 1, pp. 19-25, 2007.
    • (2007) Informat. Health Soc. Care , vol.32 , Issue.1 , pp. 19-25
    • Gafar, R.A.1    Morris, T.2
  • 10
    • 72349095104 scopus 로고    scopus 로고
    • Automateddiagnosis of glaucoma using digital fundus images
    • J. Nayak, U. R. Acharya, P. S. Bhat, N. Shetty, T. C. Lim, "Automateddiagnosis of glaucoma using digital fundus images, " J. Med. Syst., vol. 33, no. 5, pp. 337-346, 2009.
    • (2009) J. Med. Syst. , vol.33 , Issue.5 , pp. 337-346
    • Nayak, J.1    Acharya, U.R.2    Bhat, P.S.3    Shetty, N.4    Lim, T.C.5
  • 11
    • 34948883369 scopus 로고    scopus 로고
    • Identification of different stages of diabetic retinopathy usingretinal optical images
    • W. L. Yun, U. R. Acharya, Y. Venkatesh, C. Chee, L. C. Min, E. Ng, "Identification of different stages of diabetic retinopathy usingretinal optical images, " Inf. Sci., vol. 178, no. 1, pp. 106-121, 2008.
    • (2008) Inf. Sci. , vol.178 , Issue.1 , pp. 106-121
    • Yun, W.L.1    Acharya, U.R.2    Venkatesh, Y.3    Chee, C.4    Min, L.C.5    Ng, E.6
  • 12
    • 40549123754 scopus 로고    scopus 로고
    • Automatedidentification of diabetic retinopathy stages using digital fundus images
    • J. Nayak, P. S. Bhat, U. R. Acharya, C. Lim, M. Kagathi, "Automatedidentification of diabetic retinopathy stages using digital fundus images, "J. Med. Syst., vol. 32, no. 2, pp. 107-115, 2008.
    • (2008) J. Med. Syst. , vol.32 , Issue.2 , pp. 107-115
    • Nayak, J.1    Bhat, P.S.2    Acharya, U.R.3    Lim, C.4    Kagathi, M.5
  • 14
    • 2642540164 scopus 로고    scopus 로고
    • Simulation based analysis of automatedclassification of medical images
    • W. Adler, T. Hothorn, B. Lausen, "Simulation based analysis of automatedclassification of medical images, " Methods Inf. Med., vol. 43, no. 2, pp. 150-155, 2004.
    • (2004) Methods Inf. Med. , vol.43 , Issue.2 , pp. 150-155
    • Adler, W.1    Hothorn, T.2    Lausen, B.3
  • 15
    • 79955650165 scopus 로고    scopus 로고
    • Automateddiagnosis of glaucoma using texture and higher order spectra features
    • May.
    • U. R. Acharya, S. Dua, X. Du, S. V. Sree, C. K. Chua, "Automateddiagnosis of glaucoma using texture and higher order spectra features, "IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 449-455, May. 2011.
    • (2011) IEEE Trans. Inf. Technol. Biomed. , vol.15 , Issue.3 , pp. 449-455
    • Acharya, U.R.1    Dua, S.2    Du, X.3    Sree, S.V.4    Chua, C.K.5
  • 16
    • 84856839356 scopus 로고    scopus 로고
    • Wavelet basedenergy features for glaucomatous image classification
    • Jan.
    • S. Dua, U. R. Acharya, P. Chowriappa, S. V. Sree, "Wavelet basedenergy features for glaucomatous image classification, " IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 1, pp. 80-87, Jan. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.1 , pp. 80-87
    • Dua, S.1    Acharya, U.R.2    Chowriappa, P.3    Sree, S.V.4
  • 17
    • 52049108923 scopus 로고    scopus 로고
    • Correntropy as a novel measure for nonlinearitytests
    • A. Gunduz and J. C. Principe, "Correntropy as a novel measure for nonlinearitytests, " Signal Process., vol. 89, no. 1, pp. 14-23, 2009.
    • (2009) Signal Process. , vol.89 , Issue.1 , pp. 14-23
    • Gunduz, A.1    Principe, J.C.2
  • 18
    • 84880891329 scopus 로고    scopus 로고
    • Empirical wavelet transform
    • Aug.
    • J. Gilles, "Empirical wavelet transform, " IEEE Trans. Signal Process., vol. 61, no. 16, pp. 3999-4010, Aug. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.16 , pp. 3999-4010
    • Gilles, J.1
  • 19
    • 84897556821 scopus 로고    scopus 로고
    • 2D empirical transforms. Wavelets, ridgelets, curvelets revisited
    • J. Gilles, G. Tran, S. Osher, "2D empirical transforms. Wavelets, ridgelets, curvelets revisited, " SIAM J. Imag. Sci., vol. 7, no. 1, pp. 157-186, 2014.
    • (2014) SIAM J. Imag. Sci. , vol.7 , Issue.1 , pp. 157-186
    • Gilles, J.1    Tran, G.2    Osher, S.3
  • 20
    • 33744538091 scopus 로고    scopus 로고
    • Generalized correlation function:Definition, properties, application to blind equalization
    • Jun.
    • I. Santamaria, P. Pokharel, J. Principe, "Generalized correlation function:Definition, properties, application to blind equalization, " IEEETrans. Signal Process., vol. 54, no. 6, pp. 2187-2197, Jun. 2006.
    • (2006) IEEETrans. Signal Process. , vol.54 , Issue.6 , pp. 2187-2197
    • Santamaria, I.1    Pokharel, P.2    Principe, J.3
  • 21
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: Properties and applicationsin non-Gaussian signal processing
    • Nov.
    • W. Liu, P. Pokharel, J. Principe, "Correntropy: Properties and applicationsin non-Gaussian signal processing, " IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5286-5298, Nov. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.2    Principe, J.3
  • 22
    • 84928086715 scopus 로고    scopus 로고
    • Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied onheart rate signals
    • S. Patidar, R. B. Pachori, U. R. Acharya, "Automated diagnosis ofcoronary artery disease using tunable-Q wavelet transform applied onheart rate signals, " Knowl.-Based Syst., vol. 82, pp. 1-10, 2015.
    • (2015) Knowl.-Based Syst. , vol.82 , pp. 1-10
    • Patidar, S.1    Pachori, R.B.2    Acharya, U.R.3
  • 23
    • 84971232387 scopus 로고
    • Guinness, Gosset, Fisher, small samples
    • J. F. Box, "Guinness, Gosset, Fisher, small samples, " Statist. Sci., vol. 2, no. 1, pp. 45-52, 1987.
    • (1987) Statist. Sci. , vol.2 , Issue.1 , pp. 45-52
    • Box, J.F.1
  • 24
    • 84940572269 scopus 로고    scopus 로고
    • Decision support system for the glaucoma usingGabor transformation
    • U. R. Acharya, et al., "Decision support system for the glaucoma usingGabor transformation, " Biomed. Signal Process. Control, vol. 15, pp. 18-26, 2015.
    • (2015) Biomed. Signal Process. Control , vol.15 , pp. 18-26
    • Acharya, U.R.1
  • 25
    • 84926250211 scopus 로고    scopus 로고
    • Computer aided diagnosis of diabetic subjects byheart rate variability signals using discrete wavelet transform method
    • U. R. Acharya, K. S. Vidya, D. N. Ghista, W. J. E. Lim, F. Molinari, M. Sankaranarayanan, "Computer aided diagnosis of diabetic subjects byheart rate variability signals using discrete wavelet transform method, "Knowl.-Based Syst., vol. 81, pp. 56-64, 2015.
    • (2015) Knowl.-Based Syst. , vol.81 , pp. 56-64
    • Acharya, U.R.1    Vidya, K.S.2    Ghista, D.N.3    Lim, W.J.E.4    Molinari, F.5    Sankaranarayanan, M.6
  • 27
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vectormachineclassifiers
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vectormachineclassifiers, " Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 29
    • 37249031426 scopus 로고    scopus 로고
    • Waveletbased feature extraction for support vectormachines for screening balanceimpairments in the elderly
    • Dec.
    • A. H. Khandoker, D. T. H. Lai, R. K. Begg, M. Palaniswami, "Waveletbased feature extraction for support vectormachines for screening balanceimpairments in the elderly, " IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 4, pp. 587-597, Dec. 2007.
    • (2007) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.15 , Issue.4 , pp. 587-597
    • Khandoker, A.H.1    Lai, D.T.H.2    Begg, R.K.3    Palaniswami, M.4
  • 30
    • 79955594660 scopus 로고    scopus 로고
    • Evolutionarymodel selection in a wavelet-based support vector machine forautomated seizure detection
    • M. Zavar, S. Rahati, M. R. Akbarzadeh-T, H. Ghasemifard, "Evolutionarymodel selection in a wavelet-based support vector machine forautomated seizure detection, " Expert Syst. Appl., vol. 38, no. 9, pp. 10751-10758, 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 10751-10758
    • Zavar, M.1    Rahati, S.2    Akbarzadeh-T, M.R.3    Ghasemifard, H.4
  • 31
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and nonseizure EEGsignals using empirical mode decomposition
    • Nov.
    • V. Bajaj and R. B. Pachori, "Classification of seizure and nonseizure EEGsignals using empirical mode decomposition, " IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1135-1142, Nov. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.B.2
  • 32
    • 84920982950 scopus 로고    scopus 로고
    • Automatic diagnosis of septaldefects based on tunable-Q wavelet transform of cardiac sound signals
    • S. Patidar, R. B. Pachori, N. Garg, "Automatic diagnosis of septaldefects based on tunable-Q wavelet transform of cardiac sound signals, "Exp. Syst. Appl., vol. 42, no. 7, pp. 3315-3326, 2015.
    • (2015) Exp. Syst. Appl. , vol.42 , Issue.7 , pp. 3315-3326
    • Patidar, S.1    Pachori, R.B.2    Garg, N.3
  • 33
    • 84923365662 scopus 로고    scopus 로고
    • Application of entropymeasures on intrinsic mode functions for the automated identification offocal electroencephalogram signals
    • R. Sharma, R. B. Pachori, U. R. Acharya, "Application of entropymeasures on intrinsic mode functions for the automated identification offocal electroencephalogram signals, " Entropy, vol. 17, no. 2, pp. 669-691, 2015.
    • (2015) Entropy , vol.17 , Issue.2 , pp. 669-691
    • Sharma, R.1    Pachori, R.B.2    Acharya, U.R.3
  • 34
    • 84908042448 scopus 로고    scopus 로고
    • Classification of epileptic seizures in EEGsignals based on phase space representation of intrinsic mode functions
    • R. Sharma and R. B. Pachori, "Classification of epileptic seizures in EEGsignals based on phase space representation of intrinsic mode functions, "Exp. Syst. Appl., vol. 42, no. 3, pp. 1106-1117, 2015.
    • (2015) Exp. Syst. Appl. , vol.42 , Issue.3 , pp. 1106-1117
    • Sharma, R.1    Pachori, R.B.2
  • 36
    • 84892783589 scopus 로고    scopus 로고
    • Epileptic seizure classification inEEG signals using second-order difference plot of intrinsic modefunctions
    • R. B. Pachori and S. Patidar, "Epileptic seizure classification inEEG signals using second-order difference plot of intrinsic modefunctions, " Comput. Methods Programs Biomed., vol. 113, no. 2, pp. 494-502, 2014.
    • (2014) Comput. Methods Programs Biomed. , vol.113 , Issue.2 , pp. 494-502
    • Pachori, R.B.1    Patidar, S.2
  • 38
    • 84878902261 scopus 로고    scopus 로고
    • Feature extraction andrecognition of ictal EEG using EMD and SVM
    • S. Li, W. Zhou, Q. Yuan, S. Geng, D. Cai, "Feature extraction andrecognition of ictal EEG using EMD and SVM, " Comput. Biol. Med., vol. 43, no. 7, pp. 807-816, 2013.
    • (2013) Comput. Biol. Med. , vol.43 , Issue.7 , pp. 807-816
    • Li, S.1    Zhou, W.2    Yuan, Q.3    Geng, S.4    Cai, D.5
  • 40
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimationand model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimationand model selection, " in Proc. Int. Joint Conf. Artif. intell., vol.14, no. 2, 1995, pp. 1137-1145.
    • (1995) Proc. Int. Joint Conf. Artif. Intell. , vol.14 , Issue.2 , pp. 1137-1145
    • Kohavi, R.1
  • 41
    • 84900583659 scopus 로고    scopus 로고
    • Performance analysis of support vectormachines classifiers in breast cancer mammography recognition
    • A. T. Azar and S. A. El-Said, "Performance analysis of support vectormachines classifiers in breast cancer mammography recognition, " NeuralComput. Appl., vol. 24, no. 5, pp. 1163-1177, 2014.
    • (2014) NeuralComput. Appl. , vol.24 , Issue.5 , pp. 1163-1177
    • Azar, A.T.1    El-Said, S.A.2
  • 42
    • 64949176627 scopus 로고    scopus 로고
    • Detection of glaucomatous eye via color fundusimages using fractal dimensions
    • R. Kolar and J. Jan, "Detection of glaucomatous eye via color fundusimages using fractal dimensions, " Radio Eng., vol. 17, no. 3, pp. 109-114, 2008.
    • (2008) Radio Eng. , vol.17 , Issue.3 , pp. 109-114
    • Kolar, R.1    Jan, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.