-
1
-
-
34447121352
-
Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids
-
Adams, C.M., Role of the transcription factor ATF4 in the anabolic actions of insulin and the anti-anabolic actions of glucocorticoids. J. Biol. Chem. 282 (2007), 16744–16753.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 16744-16753
-
-
Adams, C.M.1
-
2
-
-
84859169877
-
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A.A., Kim, S., Wilson, C.J., Lehár, J., Kryukov, G.V., Sonkin, D., et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483 (2012), 603–607.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
Caponigro, G.2
Stransky, N.3
Venkatesan, K.4
Margolin, A.A.5
Kim, S.6
Wilson, C.J.7
Lehár, J.8
Kryukov, G.V.9
Sonkin, D.10
-
3
-
-
84957899529
-
mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle
-
Ben-Sahra, I., Hoxhaj, G., Ricoult, S.J., Asara, J.M., Manning, B.D., mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351 (2016), 728–733.
-
(2016)
Science
, vol.351
, pp. 728-733
-
-
Ben-Sahra, I.1
Hoxhaj, G.2
Ricoult, S.J.3
Asara, J.M.4
Manning, B.D.5
-
4
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
5
-
-
84940213218
-
Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element
-
Crawford, R.R., Prescott, E.T., Sylvester, C.F., Higdon, A.N., Shan, J., Kilberg, M.S., Mungrue, I.N., Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element. J. Biol. Chem. 290 (2015), 15878–15891.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 15878-15891
-
-
Crawford, R.R.1
Prescott, E.T.2
Sylvester, C.F.3
Higdon, A.N.4
Shan, J.5
Kilberg, M.S.6
Mungrue, I.N.7
-
6
-
-
77952967459
-
mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs
-
Dowling, R.J., Topisirovic, I., Alain, T., Bidinosti, M., Fonseca, B.D., Petroulakis, E., Wang, X., Larsson, O., Selvaraj, A., Liu, Y., et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 328 (2010), 1172–1176.
-
(2010)
Science
, vol.328
, pp. 1172-1176
-
-
Dowling, R.J.1
Topisirovic, I.2
Alain, T.3
Bidinosti, M.4
Fonseca, B.D.5
Petroulakis, E.6
Wang, X.7
Larsson, O.8
Selvaraj, A.9
Liu, Y.10
-
7
-
-
84940825361
-
Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry
-
Duffy, E.E., Rutenberg-Schoenberg, M., Stark, C.D., Kitchen, R.R., Gerstein, M.B., Simon, M.D., Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Mol. Cell 59 (2015), 858–866.
-
(2015)
Mol. Cell
, vol.59
, pp. 858-866
-
-
Duffy, E.E.1
Rutenberg-Schoenberg, M.2
Stark, C.D.3
Kitchen, R.R.4
Gerstein, M.B.5
Simon, M.D.6
-
8
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
Düvel, K., Yecies, J.L., Menon, S., Raman, P., Lipovsky, A.I., Souza, A.L., Triantafellow, E., Ma, Q., Gorski, R., Cleaver, S., et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39 (2010), 171–183.
-
(2010)
Mol. Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
Triantafellow, E.7
Ma, Q.8
Gorski, R.9
Cleaver, S.10
-
9
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman, M.E., Apsel, B., Uotila, A., Loewith, R., Knight, Z.A., Ruggero, D., Shokat, K.M., Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol., 7, 2009, e38.
-
(2009)
PLoS Biol.
, vol.7
, pp. e38
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
Loewith, R.4
Knight, Z.A.5
Ruggero, D.6
Shokat, K.M.7
-
10
-
-
0033634654
-
Regulated translation initiation controls stress-induced gene expression in mammalian cells
-
Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., Ron, D., Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6 (2000), 1099–1108.
-
(2000)
Mol. Cell
, vol.6
, pp. 1099-1108
-
-
Harding, H.P.1
Novoa, I.2
Zhang, Y.3
Zeng, H.4
Wek, R.5
Schapira, M.6
Ron, D.7
-
11
-
-
0037353039
-
An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
-
Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11 (2003), 619–633.
-
(2003)
Mol. Cell
, vol.11
, pp. 619-633
-
-
Harding, H.P.1
Zhang, Y.2
Zeng, H.3
Novoa, I.4
Lu, P.D.5
Calfon, M.6
Sadri, N.7
Yun, C.8
Popko, B.9
Paules, R.10
-
12
-
-
84864453787
-
The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments
-
Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., Weissman, J.S., The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7 (2012), 1534–1550.
-
(2012)
Nat. Protoc.
, vol.7
, pp. 1534-1550
-
-
Ingolia, N.T.1
Brar, G.A.2
Rouskin, S.3
McGeachy, A.M.4
Weissman, J.S.5
-
13
-
-
77956972260
-
A general chemical method to regulate protein stability in the mammalian central nervous system
-
Iwamoto, M., Björklund, T., Lundberg, C., Kirik, D., Wandless, T.J., A general chemical method to regulate protein stability in the mammalian central nervous system. Chem. Biol. 17 (2010), 981–988.
-
(2010)
Chem. Biol.
, vol.17
, pp. 981-988
-
-
Iwamoto, M.1
Björklund, T.2
Lundberg, C.3
Kirik, D.4
Wandless, T.J.5
-
14
-
-
84880709668
-
mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang, S.A., Pacold, M.E., Cervantes, C.L., Lim, D., Lou, H.J., Ottina, K., Gray, N.S., Turk, B.E., Yaffe, M.B., Sabatini, D.M., mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science, 341, 2013, 1236566.
-
(2013)
Science
, vol.341
, pp. 1236566
-
-
Kang, S.A.1
Pacold, M.E.2
Cervantes, C.L.3
Lim, D.4
Lou, H.J.5
Ottina, K.6
Gray, N.S.7
Turk, B.E.8
Yaffe, M.B.9
Sabatini, D.M.10
-
15
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante, M., Sabatini, D.M., mTOR signaling in growth control and disease. Cell 149 (2012), 274–293.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
16
-
-
5444264022
-
Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response
-
Lu, P.D., Harding, H.P., Ron, D., Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J. Cell Biol. 167 (2004), 27–33.
-
(2004)
J. Cell Biol.
, vol.167
, pp. 27-33
-
-
Lu, P.D.1
Harding, H.P.2
Ron, D.3
-
17
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
18
-
-
6944256813
-
Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise
-
Mendell, J.T., Sharifi, N.A., Meyers, J.L., Martinez-Murillo, F., Dietz, H.C., Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nat. Genet. 36 (2004), 1073–1078.
-
(2004)
Nat. Genet.
, vol.36
, pp. 1073-1078
-
-
Mendell, J.T.1
Sharifi, N.A.2
Meyers, J.L.3
Martinez-Murillo, F.4
Dietz, H.C.5
-
19
-
-
0036310982
-
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
-
Peng, T., Golub, T.R., Sabatini, D.M., The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Cell. Biol. 22 (2002), 5575–5584.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 5575-5584
-
-
Peng, T.1
Golub, T.R.2
Sabatini, D.M.3
-
20
-
-
7444229809
-
Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation
-
Sato, H., Nomura, S., Maebara, K., Sato, K., Tamba, M., Bannai, S., Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation. Biochem. Biophys. Res. Commun. 325 (2004), 109–116.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.325
, pp. 109-116
-
-
Sato, H.1
Nomura, S.2
Maebara, K.3
Sato, K.4
Tamba, M.5
Bannai, S.6
-
21
-
-
0031756336
-
Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes
-
Smith, C.M., Steitz, J.A., Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5′-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol. Cell. Biol. 18 (1998), 6897–6909.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 6897-6909
-
-
Smith, C.M.1
Steitz, J.A.2
-
22
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: mechanisms and biological targets
-
Sonenberg, N., Hinnebusch, A.G., Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136 (2009), 731–745.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
23
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen, C.C., Kang, S.A., Chang, J.W., Liu, Q., Zhang, J., Gao, Y., Reichling, L.J., Sim, T., Sabatini, D.M., Gray, N.S., An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284 (2009), 8023–8032.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
24
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen, C.C., Chantranupong, L., Keys, H.R., Wang, T., Gray, N.S., Sabatini, D.M., A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485 (2012), 109–113.
-
(2012)
Nature
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
Chantranupong, L.2
Keys, H.R.3
Wang, T.4
Gray, N.S.5
Sabatini, D.M.6
-
25
-
-
3843117589
-
Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells
-
Vattem, K.M., Wek, R.C., Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA 101 (2004), 11269–11274.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 11269-11274
-
-
Vattem, K.M.1
Wek, R.C.2
-
26
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
Walter, P., Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation. Science 334 (2011), 1081–1086.
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
27
-
-
39649107702
-
ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress
-
Yamaguchi, S., Ishihara, H., Yamada, T., Tamura, A., Usui, M., Tominaga, R., Munakata, Y., Satake, C., Katagiri, H., Tashiro, F., et al. ATF4-mediated induction of 4E-BP1 contributes to pancreatic beta cell survival under endoplasmic reticulum stress. Cell Metab. 7 (2008), 269–276.
-
(2008)
Cell Metab.
, vol.7
, pp. 269-276
-
-
Yamaguchi, S.1
Ishihara, H.2
Yamada, T.3
Tamura, A.4
Usui, M.5
Tominaga, R.6
Munakata, Y.7
Satake, C.8
Katagiri, H.9
Tashiro, F.10
-
28
-
-
84947914958
-
GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2
-
Ye, J., Palm, W., Peng, M., King, B., Lindsten, T., Li, M.O., Koumenis, C., Thompson, C.B., GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29 (2015), 2331–2336.
-
(2015)
Genes Dev.
, vol.29
, pp. 2331-2336
-
-
Ye, J.1
Palm, W.2
Peng, M.3
King, B.4
Lindsten, T.5
Li, M.O.6
Koumenis, C.7
Thompson, C.B.8
|