-
1
-
-
77952587146
-
-
Accessed November 28, 2016
-
World Health Organization website. Influenza (Seasonal). Available: http://www.who.int/mediacentre/ factsheets/fs211/en/. Accessed November 28, 2016.
-
Influenza (Seasonal)
-
-
-
3
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
PMID: 19020500
-
Ginsberg J., Mohebbi M. H., Patel R. S., Brammer L., Smolinski M. S., & Brilliant L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. https://doi.org/ 10.1038/nature07634 PMID: 19020500
-
(2009)
Nature
, vol.457
, Issue.7232
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
4
-
-
84901331477
-
Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
-
PMID: 24743682
-
McIver D. J., & Brownstein J. S. (2014). Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol, 10(4), e1003581. https://doi.org/10.1371/ journal.pcbi.1003581 PMID: 24743682
-
(2014)
PLoS Comput Biol
, vol.10
, Issue.4
, pp. e1003581
-
-
McIver, D.J.1
Brownstein, J.S.2
-
5
-
-
84906354517
-
What can digital disease detection learn from (an external revision to) Google Flu Trends?
-
PMID: 24997572
-
Santillana M., Zhang D. W., Althouse B. M., & Ayers J. W. (2014). What can digital disease detection learn from (an external revision to) Google Flu Trends?. American journal of preventive medicine, 47 (3), 341-347. https://doi.org/10.1016/j.amepre.2014.05.020 PMID: 24997572
-
(2014)
American Journal of Preventive Medicine
, vol.47
, Issue.3
, pp. 341-347
-
-
Santillana, M.1
Zhang, D.W.2
Althouse, B.M.3
Ayers, J.W.4
-
8
-
-
84872867329
-
Using google trends for influenza surveillance in South China
-
PMID: 23372837
-
Kang M., Zhong H., He J., Rutherford S., & Yang F. (2013). Using google trends for influenza surveillance in South China. PloS one, 8(1), e55205. https://doi.org/10.1371/journal.pone.0055205 PMID: 23372837
-
(2013)
PloS One
, vol.8
, Issue.1
, pp. e55205
-
-
Kang, M.1
Zhong, H.2
He, J.3
Rutherford, S.4
Yang, F.5
-
9
-
-
79960609227
-
Predicting flu trends using twitter data
-
April. IEEE
-
Achrekar, H., Gandhe, A., Lazarus, R., Yu, S. H., & Liu, B. (2011, April). Predicting flu trends using twitter data. In Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on (pp. 702-707). IEEE.
-
(2011)
Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on
, pp. 702-707
-
-
Achrekar, H.1
Gandhe, A.2
Lazarus, R.3
Yu, S.H.4
Liu, B.5
-
10
-
-
84891941337
-
National and local influenza surveillance through Twitter: An analysis of the 2012-2013 influenza epidemic
-
PMID: 24349542
-
Broniatowski D. A., Paul M. J., & Dredze M. (2013). National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic. PloS one, 8(12), e83672. https://doi.org/10.1371/journal.pone.0083672 PMID: 24349542
-
(2013)
PloS One
, vol.8
, Issue.12
, pp. e83672
-
-
Broniatowski, D.A.1
Paul, M.J.2
Dredze, M.3
-
11
-
-
84946026274
-
Combining search, social media, and traditional data sources to improve influenza surveillance
-
PMID: 26513245
-
Santillana M., Nguyen A. T., Dredze M., Paul M. J., Nsoesie E. O., & Brownstein J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513 PMID: 26513245
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.10
, pp. e1004513
-
-
Santillana, M.1
Nguyen, A.T.2
Dredze, M.3
Paul, M.J.4
Nsoesie, E.O.5
Brownstein, J.S.6
-
12
-
-
84930606330
-
Forecasting the 2013-2014 influenza season using Wikipedia
-
PMID: 25974758
-
Hickmann K. S., Fairchild G., Priedhorsky R., Generous N., Hyman J. M., Deshpande A., et al. (2015). Forecasting the 2013-2014 influenza season using Wikipedia. PLoS Comput Biol, 11(5), e1004239. https://doi.org/10.1371/journal.pcbi.1004239 PMID: 25974758
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.5
, pp. e1004239
-
-
Hickmann, K.S.1
Fairchild, G.2
Priedhorsky, R.3
Generous, N.4
Hyman, J.M.5
Deshpande, A.6
-
13
-
-
84918787542
-
Using clinicians' search query data to monitor influenza epidemics
-
Santillana M., Nsoesie E. O., Mekaru S. R., Scales D., & Brownstein J. S. (2014). Using clinicians' search query data to monitor influenza epidemics. Clinical Infectious Diseases, 59(10), 1446-1450.
-
(2014)
Clinical Infectious Diseases
, vol.59
, Issue.10
, pp. 1446-1450
-
-
Santillana, M.1
Nsoesie, E.O.2
Mekaru, S.R.3
Scales, D.4
Brownstein, J.S.5
-
14
-
-
55849100040
-
Using internet searches for influenza surveillance
-
Polgreen P. M., Chen Y., Pennock D. M., Nelson F. D., & Weinstein R. A. (2008). Using internet searches for influenza surveillance. Clinical infectious diseases, 47(11), 1443-1448.
-
(2008)
Clinical Infectious Diseases
, vol.47
, Issue.11
, pp. 1443-1448
-
-
Polgreen, P.M.1
Chen, Y.2
Pennock, D.M.3
Nelson, F.D.4
Weinstein, R.A.5
-
15
-
-
84878474470
-
Monitoring influenza epidemics in China with search query from Baidu
-
PMID: 23750192
-
Yuan Q., Nsoesie E. O., Lv B., Peng G., Chunara R., & Brownstein J. S. (2013). Monitoring influenza epidemics in China with search query from Baidu.PloS one, 8(5), e64323. https://doi.org/10.1371/ journal.pone.0064323 PMID: 23750192
-
(2013)
PloS One
, vol.8
, Issue.5
, pp. e64323
-
-
Yuan, Q.1
Nsoesie, E.O.2
Lv, B.3
Peng, G.4
Chunara, R.5
Brownstein, J.S.6
-
16
-
-
62549130378
-
Absolute humidity modulates influenza survival, transmission, and seasonality
-
Shaman J., & Kohn M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243-3248.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.9
, pp. 3243-3248
-
-
Shaman, J.1
Kohn, M.2
-
17
-
-
84922376391
-
Adaptive nowcasting of influenza outbreaks using Google searches
-
PMID: 26064532
-
Preis T., & Moat H. S. (2014). Adaptive nowcasting of influenza outbreaks using Google searches. Royal Society open science, 1(2), 140095. https://doi.org/10.1098/rsos.140095 PMID: 26064532
-
(2014)
Royal Society Open Science
, vol.1
, Issue.2
, pp. 140095
-
-
Preis, T.1
Moat, H.S.2
-
18
-
-
0345471424
-
Characterization of avian H5N1 influenza viruses from poultry in Hong Kong
-
PMID: 9878612
-
Shortridge K. F., Zhou N. N., Guan Y., Gao P., Ito T., Kawaoka Y., et al. (1998). Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology, 252(2), 331-342. https://doi.org/10.1006/viro.1998.9488 PMID: 9878612
-
(1998)
Virology
, vol.252
, Issue.2
, pp. 331-342
-
-
Shortridge, K.F.1
Zhou, N.N.2
Guan, Y.3
Gao, P.4
Ito, T.5
Kawaoka, Y.6
-
19
-
-
27744608904
-
Respiratory infections during SARS outbreak, Hong Kong, 2003
-
PMID: 16318726
-
Lo J. Y., Tsang T. H., Leung Y. H., Yeung E. Y., Wu T., & Lim W. W. (2005). Respiratory infections during SARS outbreak, Hong Kong, 2003. Emerg Infect Dis, 11(11), 1738-41. https://doi.org/10.3201/ eid1111.050729 PMID: 16318726
-
(2005)
Emerg Infect Dis
, vol.11
, Issue.11
, pp. 1738-1741
-
-
Lo, J.Y.1
Tsang, T.H.2
Leung, Y.H.3
Yeung, E.Y.4
Wu, T.5
Lim, W.W.6
-
20
-
-
77955956691
-
Community psychological and behavioral responses through the first wave of the 2009 influenza A (H1N1) pandemic in Hong Kong
-
PMID: 20677945
-
Cowling B. J., Ng D. M., Ip D. K., Liao Q., Lam W. W., Wu J. T., et al. (2010). Community psychological and behavioral responses through the first wave of the 2009 influenza A (H1N1) pandemic in Hong Kong.Journal of Infectious Diseases, 202(6), 867-876. https://doi.org/10.1086/655811 PMID: 20677945
-
(2010)
Journal of Infectious Diseases
, vol.202
, Issue.6
, pp. 867-876
-
-
Cowling, B.J.1
Ng, D.M.2
Ip, D.K.3
Liao, Q.4
Lam, W.W.5
Wu, J.T.6
-
21
-
-
84880312977
-
Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: A population-based study of laboratory-confirmed cases
-
Cowling B. J., Jin L., Lau E. H., Liao Q., Wu P., Jiang H., et al. (2013). Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. The Lancet, 382(9887), 129-137.
-
(2013)
The Lancet
, vol.382
, Issue.9887
, pp. 129-137
-
-
Cowling, B.J.1
Jin, L.2
Lau, E.H.3
Liao, Q.4
Wu, P.5
Jiang, H.6
-
22
-
-
84894075244
-
Emergence in China of human disease due to avian influenza A (H10N8)-cause for concern?
-
PMID: 24406432
-
To K. K., Tsang A. K., Chan J. F., Cheng V. C., Chen H., & Yuen K. Y. (2014). Emergence in China of human disease due to avian influenza A (H10N8)-cause for concern?. Journal of Infection, 68(3), 205-215. https://doi.org/10.1016/j.jinf.2013.12.014 PMID: 24406432
-
(2014)
Journal of Infection
, vol.68
, Issue.3
, pp. 205-215
-
-
To, K.K.1
Tsang, A.K.2
Chan, J.F.3
Cheng, V.C.4
Chen, H.5
Yuen, K.Y.6
-
23
-
-
84875974125
-
Environmental predictors of seasonal influenza epidemics across temperate and tropical climates
-
PMID: 23505366
-
Tamerius J. D., Shaman J., Alonso W. J., Bloom-Feshbach K., Uejio C. K., Comrie A., et al. (2013). Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog, 9(3), e1003194. https://doi.org/10.1371/journal.ppat.1003194 PMID: 23505366
-
(2013)
PLoS Pathog
, vol.9
, Issue.3
, pp. e1003194
-
-
Tamerius, J.D.1
Shaman, J.2
Alonso, W.J.3
Bloom-Feshbach, K.4
Uejio, C.K.5
Comrie, A.6
-
24
-
-
80055051035
-
Estimating infection attack rates and severity in real time during an influenza pandemic: Analysis of serial cross-sectional serologic surveillance data
-
PMID: 21990967
-
Wu J. T., Ho A., Ma E. S., Lee C. K., Chu D. K., Ho P. L., et al. (2011). Estimating infection attack rates and severity in real time during an influenza pandemic: analysis of serial cross-sectional serologic surveillance data. PLoS Med, 8(10), e1001103. https://doi.org/10.1371/journal.pmed.1001103 PMID: 21990967
-
(2011)
PLoS Med
, vol.8
, Issue.10
, pp. e1001103
-
-
Wu, J.T.1
Ho, A.2
Ma, E.S.3
Lee, C.K.4
Chu, D.K.5
Ho, P.L.6
-
25
-
-
84938651583
-
Forecasting influenza epidemics in Hong Kong
-
PMID: 26226185
-
Yang W., Cowling B. J., Lau E. H., & Shaman J. (2015). Forecasting influenza epidemics in Hong Kong. PLoS Comput Biol, 11(7), e1004383. https://doi.org/10.1371/journal.pcbi.1004383 PMID: 26226185
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.7
, pp. e1004383
-
-
Yang, W.1
Cowling, B.J.2
Lau, E.H.3
Shaman, J.4
-
26
-
-
84899796391
-
Forecasting influenza epidemics from multi-stream surveillance data in a subtropical city of China
-
PMID: 24676091
-
Cao P. H., Wang X., Fang S. S., Cheng X. W., Chan K. P., Wang X. L., et al. (2014). Forecasting influenza epidemics from multi-stream surveillance data in a subtropical city of China. PloS one, 9(3), e92945. https://doi.org/10.1371/journal.pone.0092945 PMID: 24676091
-
(2014)
PloS One
, vol.9
, Issue.3
, pp. e92945
-
-
Cao, P.H.1
Wang, X.2
Fang, S.S.3
Cheng, X.W.4
Chan, K.P.5
Wang, X.L.6
-
27
-
-
84896056107
-
The parable of Google flu: Traps in big data analysis
-
PMID: 24626916
-
Lazer D., Kennedy R., King G., & Vespignani A. (2014). The parable of Google flu: traps in big data analysis. Science, 343(6176), 1203-1205. https://doi.org/10.1126/science.1248506 PMID: 24626916
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1203-1205
-
-
Lazer, D.1
Kennedy, R.2
King, G.3
Vespignani, A.4
-
28
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
PMID: 16873662
-
Hinton G. E., & Salakhutdinov R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647 PMID: 16873662
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
29
-
-
84930630277
-
Deep learning
-
PMID: 26017442
-
LeCun Y., Bengio Y., & Hinton G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/ 10.1038/nature14539 PMID: 26017442
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
30
-
-
84910651844
-
Deep learning in neural networks: An overview
-
PMID: 25462637
-
Schmidhuber J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
31
-
-
84925014499
-
Large-scale transportation network congestion evolution prediction using deep learning theory
-
PMID: 25780910
-
Ma X., Yu H., Wang Y., & Wang Y. (2015). Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one, 10(3), e0119044. https://doi.org/10.1371/journal.pone. 0119044 PMID: 25780910
-
(2015)
PloS One
, vol.10
, Issue.3
, pp. e0119044
-
-
Ma, X.1
Yu, H.2
Wang, Y.3
Wang, Y.4
-
32
-
-
84966605239
-
On infectious intestinal disease surveillance using social media content
-
April. ACM
-
Zou, B., Lampos, V., Gorton, R., & Cox, I. J. (2016, April). On Infectious Intestinal Disease Surveillance using Social Media Content. In Proceedings of the 6th International Conference on Digital Health Conference (pp. 157-161). ACM.
-
(2016)
Proceedings of the 6th International Conference on Digital Health Conference
, pp. 157-161
-
-
Zou, B.1
Lampos, V.2
Gorton, R.3
Cox, I.J.4
-
33
-
-
84907500988
-
Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
-
Huang W., Song G., Hong H., & Xie K. (2014). Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 15(5), 2191-2201.
-
(2014)
IEEE Transactions on Intelligent Transportation Systems
, vol.15
, Issue.5
, pp. 2191-2201
-
-
Huang, W.1
Song, G.2
Hong, H.3
Xie, K.4
-
35
-
-
20444497873
-
Using Bayesian model averaging to calibrate forecast ensembles
-
Raftery A. E., Gneiting T., Balabdaoui F., & Polakowski M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5), 1155-1174.
-
(2005)
Monthly Weather Review
, vol.133
, Issue.5
, pp. 1155-1174
-
-
Raftery, A.E.1
Gneiting, T.2
Balabdaoui, F.3
Polakowski, M.4
-
36
-
-
33749520654
-
-
Accessed November 28, 2016
-
Centers for Disease Control and Prevention website. Overview of Influenza Surveillance in the United States. Available: http://www.cdc.gov/flu/weekly/overview.htm. Accessed November 28, 2016.
-
Overview of Influenza Surveillance in the United States
-
-
-
39
-
-
70049096998
-
Are meteorological parameters associated with acute respiratory tract infections?
-
PMID: 19663691
-
du Prel J. B., Puppe W., Gröndahl B., Knuf M., Weigl F., Schaaff F., et al. (2009). Are meteorological parameters associated with acute respiratory tract infections?. Clinical infectious diseases, 49(6), 861-868. https://doi.org/10.1086/605435 PMID: 19663691
-
(2009)
Clinical Infectious Diseases
, vol.49
, Issue.6
, pp. 861-868
-
-
Du Prel, J.B.1
Puppe, W.2
Gröndahl, B.3
Knuf, M.4
Weigl, F.5
Schaaff, F.6
-
40
-
-
0041671077
-
A seasonal model to simulate influenza oscillation in Tokyo
-
PMID: 12824683
-
Urashima M, Shindo N, Okabe N (2003) A seasonal model to simulate influenza oscillation in Tokyo. Jpn J Infect Dis 56: 43-47. PMID: 12824683
-
(2003)
Jpn J Infect Dis
, vol.56
, pp. 43-47
-
-
Urashima, M.1
Shindo, N.2
Okabe, N.3
-
42
-
-
34249810682
-
Influenza seasonality: Underlying causes and modeling theories
-
PMID: 17182688
-
Lofgren E, Fefferman NH, Naumova YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81: 5429-5436. https://doi.org/10.1128/JVI.01680-06 PMID: 17182688
-
(2007)
J Virol
, vol.81
, pp. 5429-5436
-
-
Lofgren, E.1
Fefferman, N.H.2
Naumova, Y.N.3
Gorski, J.4
Naumova, E.N.5
-
43
-
-
12444346752
-
Association of influenza epidemics with global climate variability
-
PMID: 15648600
-
Viboud C., Pakdaman K., Boelle P. Y., Wilson M. L., Myers M. F., Valleron A. J., et al. (2004). Association of influenza epidemics with global climate variability. European journal of epidemiology, 19(11), 1055-1059. PMID: 15648600
-
(2004)
European Journal of Epidemiology
, vol.19
, Issue.11
, pp. 1055-1059
-
-
Viboud, C.1
Pakdaman, K.2
Boelle, P.Y.3
Wilson, M.L.4
Myers, M.F.5
Valleron, A.J.6
-
44
-
-
34548780321
-
Inactivation of influenza virus by solar radiation
-
PMID: 17880524
-
Sagripanti JL, Lytle CD (2007) Inactivation of influenza virus by solar radiation. Photochem Photobiol 83: 1278-1282. https://doi.org/10.1111/j.1751-1097.2007.00177.x PMID: 17880524
-
(2007)
Photochem Photobiol
, vol.83
, pp. 1278-1282
-
-
Sagripanti, J.L.1
Lytle, C.D.2
-
45
-
-
85018960377
-
-
Accessed 13 March 2017
-
Hong Kong Observatory. http://www.hko.gov.hk/. Accessed 13 March 2017.
-
-
-
-
46
-
-
84978056031
-
Challenges in real-time prediction of infectious disease: A case study of dengue in Thailand
-
PMID: 27304062
-
Reich N. G., Lauer S. A., Sakrejda K., Iamsirithaworn S., Hinjoy S., Suangtho P., et al. (2016). Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand. PLoS Negl Trop Dis, 10(6), e0004761. https://doi.org/10.1371/journal.pntd.0004761 PMID: 27304062
-
(2016)
PLoS Negl Trop Dis
, vol.10
, Issue.6
, pp. e0004761
-
-
Reich, N.G.1
Lauer, S.A.2
Sakrejda, K.3
Iamsirithaworn, S.4
Hinjoy, S.5
Suangtho, P.6
-
47
-
-
84940740947
-
Flexible modeling of epidemics with an empirical Bayes framework
-
PMID: 26317693
-
Brooks L. C., Farrow D. C., Hyun S., Tibshirani R. J., & Rosenfeld R. (2015). Flexible modeling of epidemics with an empirical Bayes framework. PLoS Comput Biol, 11(8), e1004382. https://doi.org/10.1371/journal.pcbi.1004382 PMID: 26317693
-
(2015)
PLoS Comput Biol
, vol.11
, Issue.8
, pp. e1004382
-
-
Brooks, L.C.1
Farrow, D.C.2
Hyun, S.3
Tibshirani, R.J.4
Rosenfeld, R.5
-
48
-
-
85044557030
-
Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
-
Funk S., Camacho A., Kucharski A. J., Eggo R. M., & Edmunds W. J. (2016). Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics.
-
(2016)
Epidemics
-
-
Funk, S.1
Camacho, A.2
Kucharski, A.J.3
Eggo, R.M.4
Edmunds, W.J.5
-
49
-
-
84875877687
-
Operational epidemiological modeling: A proposed national process
-
Lenart B., Schlegelmilch J., Bergonzi-King L., Schnelle D., Difato T. L., & Wireman J. (2013). Operational epidemiological modeling: A proposed national process. Homeland Security Affairs, 9(1).
-
(2013)
Homeland Security Affairs
, vol.9
, pp. 1
-
-
Lenart, B.1
Schlegelmilch, J.2
Bergonzi-King, L.3
Schnelle, D.4
Difato, T.L.5
Wireman, J.6
-
50
-
-
34548637081
-
Automated time series forecasting for biosurveillance
-
PMID: 17335120
-
Burkom H. S., Murphy S. P., & Shmueli G. (2007). Automated time series forecasting for biosurveillance. Statistics in medicine, 26(22), 4202-4218.pr https://doi.org/10.1002/sim.2835 PMID: 17335120
-
(2007)
Statistics in Medicine
, vol.26
, Issue.22
, pp. 4202-4218
-
-
Burkom, H.S.1
Murphy, S.P.2
Shmueli, G.3
-
51
-
-
84874002846
-
Influenza forecasting with Google flu trends
-
PMID: 23457520
-
Dugas A. F., Jalalpour M., Gel Y., Levin S., Torcaso F., Igusa T., et al. (2013). Influenza forecasting with Google flu trends. PloS one, 8(2), e56176. https://doi.org/10.1371/journal.pone.0056176 PMID: 23457520
-
(2013)
PloS One
, vol.8
, Issue.2
, pp. e56176
-
-
Dugas, A.F.1
Jalalpour, M.2
Gel, Y.3
Levin, S.4
Torcaso, F.5
Igusa, T.6
-
52
-
-
77949771773
-
Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
-
PMID: 20209164
-
Soebiyanto R. P., Adimi F., & Kiang R. K. (2010). Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PloS one, 5(3), e9450. https://doi.org/10.1371/ journal.pone.0009450 PMID: 20209164
-
(2010)
PloS One
, vol.5
, Issue.3
, pp. e9450
-
-
Soebiyanto, R.P.1
Adimi, F.2
Kiang, R.K.3
-
55
-
-
84975753826
-
-
R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
-
(2016)
R: A Language and Environment for Statistical Computing
-
-
-
57
-
-
0031015557
-
The LASSO method for variable selection in the Cox model
-
PMID: 9044528
-
Tibshirani R. (1997). The LASSO method for variable selection in the Cox model. Statistics in Medicine 16 (4), 385-395. PMID: 9044528
-
(1997)
Statistics in Medicine
, vol.16
, Issue.4
, pp. 385-395
-
-
Tibshirani, R.1
-
58
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
Tibshirani R., Saunders M., Rosset S., Zhu J., & Knight K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1), 91-108.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
59
-
-
37249032736
-
Spatial smoothing and hot spot detection for cgh data using the fused lasso
-
Tibshirani R. and Wang P. (2007). Spatial smoothing and hot spot detection for cgh data using the fused lasso. Biostatistics Journal 9, 18-29.
-
(2007)
Biostatistics Journal
, vol.9
, pp. 18-29
-
-
Tibshirani, R.1
Wang, P.2
-
62
-
-
0003410290
-
-
Princeton: Princeton university press
-
Hamilton J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton university press.
-
(1994)
Time Series Analysis
, vol.2
-
-
Hamilton, J.D.1
-
66
-
-
84968661778
-
Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
-
Greenspan H., van Ginneken B., & Summers R. M. (2016). Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35(5), 1153-1159.
-
(2016)
IEEE Transactions on Medical Imaging
, vol.35
, Issue.5
, pp. 1153-1159
-
-
Greenspan, H.1
Van Ginneken, B.2
Summers, R.M.3
-
67
-
-
84997424229
-
Computational linguistics and deep learning
-
Manning C. D. (2016). Computational linguistics and deep learning. Computational Linguistics.
-
(2016)
Computational Linguistics
-
-
Manning, C.D.1
-
68
-
-
84954372459
-
Deep learning in drug discovery
-
PMID: 27491648
-
Gawehn E., Hiss J. A., & Schneider G. (2016). Deep learning in drug discovery. Molecular Informatics, 35(1), 3-14. https://doi.org/10.1002/minf.201501008 PMID: 27491648
-
(2016)
Molecular Informatics
, vol.35
, Issue.1
, pp. 3-14
-
-
Gawehn, E.1
Hiss, J.A.2
Schneider, G.3
-
69
-
-
49549089775
-
Weights optimization of neural network via improved BCO approach
-
Zhang Y., & Wu L. (2008). Weights optimization of neural network via improved BCO approach. Progress In Electromagnetics Research, 83, 185-198.
-
(2008)
Progress in Electromagnetics Research
, vol.83
, pp. 185-198
-
-
Zhang, Y.1
Wu, L.2
-
71
-
-
84908212637
-
-
Accessed 13 March 2017
-
"Deep Learning Tutorial." http://deeplearning.net/tutorial/deeplearning.pdf. Accessed 13 March 2017
-
Deep Learning Tutorial
-
-
-
73
-
-
84958022203
-
-
Accessed 13 March 2017
-
Candel, Arno, Jessica Lanford, Erin LeDell, Viraj Parmar, Anisha Arora. "Deep Learning with H2O." https://h2o-release.s3.amazonaws.com/h2o/rel-slater/9/docs-website/h2o-docs/booklets/ DeepLearning-Vignette.pdf. Accessed 13 March 2017
-
Deep Learning with H2O
-
-
Candel, A.1
Lanford, J.2
LeDell, E.3
Parmar, V.4
Arora, A.5
-
74
-
-
84894473312
-
Credit spreads as predictors of real-time economic activity: A Bayesian model-averaging approach
-
Faust J., Gilchrist S., Wright J. H., & Zakrajssek E. (2013). Credit spreads as predictors of real-time economic activity: a Bayesian model-averaging approach. Review of Economics and Statistics, 95(5), 1501-1519.
-
(2013)
Review of Economics and Statistics
, vol.95
, Issue.5
, pp. 1501-1519
-
-
Faust, J.1
Gilchrist, S.2
Wright, J.H.3
Zakrajssek, E.4
-
75
-
-
84880176182
-
Probabilistic wind vector forecasting using ensembles and Bayesian model averaging
-
McLean Sloughter J., Gneiting T., & Raftery A. E. (2013). Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Monthly Weather Review, 141(6), 2107-2119.
-
(2013)
Monthly Weather Review
, vol.141
, Issue.6
, pp. 2107-2119
-
-
McLean Sloughter, J.1
Gneiting, T.2
Raftery, A.E.3
-
76
-
-
85027933567
-
Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction
-
Wöhling T., Schöniger A., Gayler S., & Nowak W. (2015). Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction. Water Resources Research, 51(4), 2825-2846.
-
(2015)
Water Resources Research
, vol.51
, Issue.4
, pp. 2825-2846
-
-
Wöhling, T.1
Schöniger, A.2
Gayler, S.3
Nowak, W.4
-
77
-
-
84863417897
-
-
R package version 3.18.6
-
Raftery, A., Hoeting, J., Volinsky, C., Painter, I. and Yeung, K.Y. (2015). BMA: Bayesian Model Averaging. R package version 3.18.6.
-
(2015)
BMA: Bayesian Model Averaging
-
-
Raftery, A.1
Hoeting, J.2
Volinsky, C.3
Painter, I.4
Yeung, K.Y.5
-
78
-
-
84877030184
-
A new surveillance and spatio-temporal visualization tool SIMID: SIMulation of Infectious Diseases using random networks and GIS
-
Ramirez-Ramirez L.L., Gel Y. R., Thompson M.E., De Villa E. and Mcpherson M. (2013). A new surveillance and spatio-temporal visualization tool SIMID: SIMulation of Infectious Diseases using random networks and GIS. Comput. Methods & Programs in Biomedicine, 110(3):455-470.
-
(2013)
Comput. Methods & Programs in Biomedicine
, vol.110
, Issue.3
, pp. 455-470
-
-
Ramirez-Ramirez, L.L.1
Gel, Y.R.2
Thompson, M.E.3
De Villa, E.4
Mcpherson, M.5
-
79
-
-
84898028869
-
Forecasting peaks of seasonal influenza epidemics
-
Nsoesie E.O., Marathe M, and Brownstein J.S. Forecasting peaks of seasonal influenza epidemics. PLoS ONE, 8(2), 06 2013.
-
(2013)
PLoS ONE
, vol.8
, Issue.2
, pp. 06
-
-
Nsoesie, E.O.1
Marathe, M.2
Brownstein, J.S.3
-
80
-
-
84994663331
-
Catching social butterflies: Identifying influential users of an event-based social networking service
-
Popa, J., Nezafati, K., Gel, Y.R., Zweck, J., Bobashev, G. (2016). Catching Social Butterflies: Identifying Influential Users of an Event-Based Social Networking Service. Proceedings of the 2016 IEEE Big Data Congress, 198-205.
-
(2016)
Proceedings of the 2016 IEEE Big Data Congress
, pp. 198-205
-
-
Popa, J.1
Nezafati, K.2
Gel, Y.R.3
Zweck, J.4
Bobashev, G.5
|