메뉴 건너뛰기




Volumn 12, Issue 5, 2017, Pages

Forecasting influenza in Hong Kong with Google search queries and statistical model fusion

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODEL; AVERAGING; BAYESIAN MODEL AVERAGING; CLIMATE CHANGE; CLINICAL ARTICLE; CONTROLLED STUDY; DATA COLLECTION METHOD; DEEP LEARNING; DISEASE SURVEILLANCE; ENVIRONMENTAL TEMPERATURE; ERROR; FLU LIKE SYNDROME; FORECASTING; GENERALIZED LINEAR MODEL; HONG KONG; HUMAN; HUMIDITY; INFLUENZA; INFORMATION PROCESSING; LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR MODEL; MACHINE LEARNING; MEAN ABSOLUTE ERROR; MEAN ABSOLUTE PREDICTIVE ERROR; METEOROLOGY; OUTPATIENT DEPARTMENT; PREDICTION; ROOT MEAN SQUARED ERROR; SEASONAL INFLUENZA; SOCIAL MEDIA; STATISTICAL MODEL; WEB BROWSER; BAYES THEOREM; EVALUATION STUDY; HEALTH SURVEY; INFLUENZA, HUMAN; INTERNET; PROCEDURES; TIME FACTOR; WEATHER;

EID: 85018976848     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0176690     Document Type: Article
Times cited : (94)

References (80)
  • 1
    • 77952587146 scopus 로고    scopus 로고
    • Accessed November 28, 2016
    • World Health Organization website. Influenza (Seasonal). Available: http://www.who.int/mediacentre/ factsheets/fs211/en/. Accessed November 28, 2016.
    • Influenza (Seasonal)
  • 3
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • PMID: 19020500
    • Ginsberg J., Mohebbi M. H., Patel R. S., Brammer L., Smolinski M. S., & Brilliant L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232), 1012-1014. https://doi.org/ 10.1038/nature07634 PMID: 19020500
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 4
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • PMID: 24743682
    • McIver D. J., & Brownstein J. S. (2014). Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput Biol, 10(4), e1003581. https://doi.org/10.1371/ journal.pcbi.1003581 PMID: 24743682
    • (2014) PLoS Comput Biol , vol.10 , Issue.4 , pp. e1003581
    • McIver, D.J.1    Brownstein, J.S.2
  • 5
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google Flu Trends?
    • PMID: 24997572
    • Santillana M., Zhang D. W., Althouse B. M., & Ayers J. W. (2014). What can digital disease detection learn from (an external revision to) Google Flu Trends?. American journal of preventive medicine, 47 (3), 341-347. https://doi.org/10.1016/j.amepre.2014.05.020 PMID: 24997572
    • (2014) American Journal of Preventive Medicine , vol.47 , Issue.3 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 7
    • 84938513272 scopus 로고    scopus 로고
    • Advances in nowcasting influenza-like illness rates using search query logs
    • Lampos V., Miller A. C., Crossan S., & Stefansen C. (2015). Advances in nowcasting influenza-like illness rates using search query logs. Scientific reports, 5.
    • (2015) Scientific Reports , pp. 5
    • Lampos, V.1    Miller, A.C.2    Crossan, S.3    Stefansen, C.4
  • 8
    • 84872867329 scopus 로고    scopus 로고
    • Using google trends for influenza surveillance in South China
    • PMID: 23372837
    • Kang M., Zhong H., He J., Rutherford S., & Yang F. (2013). Using google trends for influenza surveillance in South China. PloS one, 8(1), e55205. https://doi.org/10.1371/journal.pone.0055205 PMID: 23372837
    • (2013) PloS One , vol.8 , Issue.1 , pp. e55205
    • Kang, M.1    Zhong, H.2    He, J.3    Rutherford, S.4    Yang, F.5
  • 10
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through Twitter: An analysis of the 2012-2013 influenza epidemic
    • PMID: 24349542
    • Broniatowski D. A., Paul M. J., & Dredze M. (2013). National and local influenza surveillance through Twitter: an analysis of the 2012-2013 influenza epidemic. PloS one, 8(12), e83672. https://doi.org/10.1371/journal.pone.0083672 PMID: 24349542
    • (2013) PloS One , vol.8 , Issue.12 , pp. e83672
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 11
    • 84946026274 scopus 로고    scopus 로고
    • Combining search, social media, and traditional data sources to improve influenza surveillance
    • PMID: 26513245
    • Santillana M., Nguyen A. T., Dredze M., Paul M. J., Nsoesie E. O., & Brownstein J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol, 11(10), e1004513. https://doi.org/10.1371/journal.pcbi.1004513 PMID: 26513245
    • (2015) PLoS Comput Biol , vol.11 , Issue.10 , pp. e1004513
    • Santillana, M.1    Nguyen, A.T.2    Dredze, M.3    Paul, M.J.4    Nsoesie, E.O.5    Brownstein, J.S.6
  • 12
    • 84930606330 scopus 로고    scopus 로고
    • Forecasting the 2013-2014 influenza season using Wikipedia
    • PMID: 25974758
    • Hickmann K. S., Fairchild G., Priedhorsky R., Generous N., Hyman J. M., Deshpande A., et al. (2015). Forecasting the 2013-2014 influenza season using Wikipedia. PLoS Comput Biol, 11(5), e1004239. https://doi.org/10.1371/journal.pcbi.1004239 PMID: 25974758
    • (2015) PLoS Comput Biol , vol.11 , Issue.5 , pp. e1004239
    • Hickmann, K.S.1    Fairchild, G.2    Priedhorsky, R.3    Generous, N.4    Hyman, J.M.5    Deshpande, A.6
  • 15
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from Baidu
    • PMID: 23750192
    • Yuan Q., Nsoesie E. O., Lv B., Peng G., Chunara R., & Brownstein J. S. (2013). Monitoring influenza epidemics in China with search query from Baidu.PloS one, 8(5), e64323. https://doi.org/10.1371/ journal.pone.0064323 PMID: 23750192
    • (2013) PloS One , vol.8 , Issue.5 , pp. e64323
    • Yuan, Q.1    Nsoesie, E.O.2    Lv, B.3    Peng, G.4    Chunara, R.5    Brownstein, J.S.6
  • 16
    • 62549130378 scopus 로고    scopus 로고
    • Absolute humidity modulates influenza survival, transmission, and seasonality
    • Shaman J., & Kohn M. (2009). Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences, 106(9), 3243-3248.
    • (2009) Proceedings of the National Academy of Sciences , vol.106 , Issue.9 , pp. 3243-3248
    • Shaman, J.1    Kohn, M.2
  • 17
    • 84922376391 scopus 로고    scopus 로고
    • Adaptive nowcasting of influenza outbreaks using Google searches
    • PMID: 26064532
    • Preis T., & Moat H. S. (2014). Adaptive nowcasting of influenza outbreaks using Google searches. Royal Society open science, 1(2), 140095. https://doi.org/10.1098/rsos.140095 PMID: 26064532
    • (2014) Royal Society Open Science , vol.1 , Issue.2 , pp. 140095
    • Preis, T.1    Moat, H.S.2
  • 18
    • 0345471424 scopus 로고    scopus 로고
    • Characterization of avian H5N1 influenza viruses from poultry in Hong Kong
    • PMID: 9878612
    • Shortridge K. F., Zhou N. N., Guan Y., Gao P., Ito T., Kawaoka Y., et al. (1998). Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology, 252(2), 331-342. https://doi.org/10.1006/viro.1998.9488 PMID: 9878612
    • (1998) Virology , vol.252 , Issue.2 , pp. 331-342
    • Shortridge, K.F.1    Zhou, N.N.2    Guan, Y.3    Gao, P.4    Ito, T.5    Kawaoka, Y.6
  • 19
    • 27744608904 scopus 로고    scopus 로고
    • Respiratory infections during SARS outbreak, Hong Kong, 2003
    • PMID: 16318726
    • Lo J. Y., Tsang T. H., Leung Y. H., Yeung E. Y., Wu T., & Lim W. W. (2005). Respiratory infections during SARS outbreak, Hong Kong, 2003. Emerg Infect Dis, 11(11), 1738-41. https://doi.org/10.3201/ eid1111.050729 PMID: 16318726
    • (2005) Emerg Infect Dis , vol.11 , Issue.11 , pp. 1738-1741
    • Lo, J.Y.1    Tsang, T.H.2    Leung, Y.H.3    Yeung, E.Y.4    Wu, T.5    Lim, W.W.6
  • 20
    • 77955956691 scopus 로고    scopus 로고
    • Community psychological and behavioral responses through the first wave of the 2009 influenza A (H1N1) pandemic in Hong Kong
    • PMID: 20677945
    • Cowling B. J., Ng D. M., Ip D. K., Liao Q., Lam W. W., Wu J. T., et al. (2010). Community psychological and behavioral responses through the first wave of the 2009 influenza A (H1N1) pandemic in Hong Kong.Journal of Infectious Diseases, 202(6), 867-876. https://doi.org/10.1086/655811 PMID: 20677945
    • (2010) Journal of Infectious Diseases , vol.202 , Issue.6 , pp. 867-876
    • Cowling, B.J.1    Ng, D.M.2    Ip, D.K.3    Liao, Q.4    Lam, W.W.5    Wu, J.T.6
  • 21
    • 84880312977 scopus 로고    scopus 로고
    • Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: A population-based study of laboratory-confirmed cases
    • Cowling B. J., Jin L., Lau E. H., Liao Q., Wu P., Jiang H., et al. (2013). Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. The Lancet, 382(9887), 129-137.
    • (2013) The Lancet , vol.382 , Issue.9887 , pp. 129-137
    • Cowling, B.J.1    Jin, L.2    Lau, E.H.3    Liao, Q.4    Wu, P.5    Jiang, H.6
  • 22
    • 84894075244 scopus 로고    scopus 로고
    • Emergence in China of human disease due to avian influenza A (H10N8)-cause for concern?
    • PMID: 24406432
    • To K. K., Tsang A. K., Chan J. F., Cheng V. C., Chen H., & Yuen K. Y. (2014). Emergence in China of human disease due to avian influenza A (H10N8)-cause for concern?. Journal of Infection, 68(3), 205-215. https://doi.org/10.1016/j.jinf.2013.12.014 PMID: 24406432
    • (2014) Journal of Infection , vol.68 , Issue.3 , pp. 205-215
    • To, K.K.1    Tsang, A.K.2    Chan, J.F.3    Cheng, V.C.4    Chen, H.5    Yuen, K.Y.6
  • 23
    • 84875974125 scopus 로고    scopus 로고
    • Environmental predictors of seasonal influenza epidemics across temperate and tropical climates
    • PMID: 23505366
    • Tamerius J. D., Shaman J., Alonso W. J., Bloom-Feshbach K., Uejio C. K., Comrie A., et al. (2013). Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog, 9(3), e1003194. https://doi.org/10.1371/journal.ppat.1003194 PMID: 23505366
    • (2013) PLoS Pathog , vol.9 , Issue.3 , pp. e1003194
    • Tamerius, J.D.1    Shaman, J.2    Alonso, W.J.3    Bloom-Feshbach, K.4    Uejio, C.K.5    Comrie, A.6
  • 24
    • 80055051035 scopus 로고    scopus 로고
    • Estimating infection attack rates and severity in real time during an influenza pandemic: Analysis of serial cross-sectional serologic surveillance data
    • PMID: 21990967
    • Wu J. T., Ho A., Ma E. S., Lee C. K., Chu D. K., Ho P. L., et al. (2011). Estimating infection attack rates and severity in real time during an influenza pandemic: analysis of serial cross-sectional serologic surveillance data. PLoS Med, 8(10), e1001103. https://doi.org/10.1371/journal.pmed.1001103 PMID: 21990967
    • (2011) PLoS Med , vol.8 , Issue.10 , pp. e1001103
    • Wu, J.T.1    Ho, A.2    Ma, E.S.3    Lee, C.K.4    Chu, D.K.5    Ho, P.L.6
  • 25
    • 84938651583 scopus 로고    scopus 로고
    • Forecasting influenza epidemics in Hong Kong
    • PMID: 26226185
    • Yang W., Cowling B. J., Lau E. H., & Shaman J. (2015). Forecasting influenza epidemics in Hong Kong. PLoS Comput Biol, 11(7), e1004383. https://doi.org/10.1371/journal.pcbi.1004383 PMID: 26226185
    • (2015) PLoS Comput Biol , vol.11 , Issue.7 , pp. e1004383
    • Yang, W.1    Cowling, B.J.2    Lau, E.H.3    Shaman, J.4
  • 26
    • 84899796391 scopus 로고    scopus 로고
    • Forecasting influenza epidemics from multi-stream surveillance data in a subtropical city of China
    • PMID: 24676091
    • Cao P. H., Wang X., Fang S. S., Cheng X. W., Chan K. P., Wang X. L., et al. (2014). Forecasting influenza epidemics from multi-stream surveillance data in a subtropical city of China. PloS one, 9(3), e92945. https://doi.org/10.1371/journal.pone.0092945 PMID: 24676091
    • (2014) PloS One , vol.9 , Issue.3 , pp. e92945
    • Cao, P.H.1    Wang, X.2    Fang, S.S.3    Cheng, X.W.4    Chan, K.P.5    Wang, X.L.6
  • 27
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google flu: Traps in big data analysis
    • PMID: 24626916
    • Lazer D., Kennedy R., King G., & Vespignani A. (2014). The parable of Google flu: traps in big data analysis. Science, 343(6176), 1203-1205. https://doi.org/10.1126/science.1248506 PMID: 24626916
    • (2014) Science , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 28
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • PMID: 16873662
    • Hinton G. E., & Salakhutdinov R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647 PMID: 16873662
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 29
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • PMID: 26017442
    • LeCun Y., Bengio Y., & Hinton G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/ 10.1038/nature14539 PMID: 26017442
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 30
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • PMID: 25462637
    • Schmidhuber J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 31
    • 84925014499 scopus 로고    scopus 로고
    • Large-scale transportation network congestion evolution prediction using deep learning theory
    • PMID: 25780910
    • Ma X., Yu H., Wang Y., & Wang Y. (2015). Large-scale transportation network congestion evolution prediction using deep learning theory. PloS one, 10(3), e0119044. https://doi.org/10.1371/journal.pone. 0119044 PMID: 25780910
    • (2015) PloS One , vol.10 , Issue.3 , pp. e0119044
    • Ma, X.1    Yu, H.2    Wang, Y.3    Wang, Y.4
  • 33
    • 84907500988 scopus 로고    scopus 로고
    • Deep architecture for traffic flow prediction: Deep belief networks with multitask learning
    • Huang W., Song G., Hong H., & Xie K. (2014). Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 15(5), 2191-2201.
    • (2014) IEEE Transactions on Intelligent Transportation Systems , vol.15 , Issue.5 , pp. 2191-2201
    • Huang, W.1    Song, G.2    Hong, H.3    Xie, K.4
  • 36
    • 33749520654 scopus 로고    scopus 로고
    • Accessed November 28, 2016
    • Centers for Disease Control and Prevention website. Overview of Influenza Surveillance in the United States. Available: http://www.cdc.gov/flu/weekly/overview.htm. Accessed November 28, 2016.
    • Overview of Influenza Surveillance in the United States
  • 39
    • 70049096998 scopus 로고    scopus 로고
    • Are meteorological parameters associated with acute respiratory tract infections?
    • PMID: 19663691
    • du Prel J. B., Puppe W., Gröndahl B., Knuf M., Weigl F., Schaaff F., et al. (2009). Are meteorological parameters associated with acute respiratory tract infections?. Clinical infectious diseases, 49(6), 861-868. https://doi.org/10.1086/605435 PMID: 19663691
    • (2009) Clinical Infectious Diseases , vol.49 , Issue.6 , pp. 861-868
    • Du Prel, J.B.1    Puppe, W.2    Gröndahl, B.3    Knuf, M.4    Weigl, F.5    Schaaff, F.6
  • 40
    • 0041671077 scopus 로고    scopus 로고
    • A seasonal model to simulate influenza oscillation in Tokyo
    • PMID: 12824683
    • Urashima M, Shindo N, Okabe N (2003) A seasonal model to simulate influenza oscillation in Tokyo. Jpn J Infect Dis 56: 43-47. PMID: 12824683
    • (2003) Jpn J Infect Dis , vol.56 , pp. 43-47
    • Urashima, M.1    Shindo, N.2    Okabe, N.3
  • 41
    • 72849123960 scopus 로고    scopus 로고
    • Influenza virus transmission is dependerelative humidity
    • Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependerelative humidity. PLoS Pathogens 3: e151.
    • (2007) PLoS Pathogens , vol.3 , pp. e151
    • Lowen, A.C.1    Mubareka, S.2    Steel, J.3    Palese, P.4
  • 42
    • 34249810682 scopus 로고    scopus 로고
    • Influenza seasonality: Underlying causes and modeling theories
    • PMID: 17182688
    • Lofgren E, Fefferman NH, Naumova YN, Gorski J, Naumova EN (2007) Influenza seasonality: underlying causes and modeling theories. J Virol 81: 5429-5436. https://doi.org/10.1128/JVI.01680-06 PMID: 17182688
    • (2007) J Virol , vol.81 , pp. 5429-5436
    • Lofgren, E.1    Fefferman, N.H.2    Naumova, Y.N.3    Gorski, J.4    Naumova, E.N.5
  • 44
    • 34548780321 scopus 로고    scopus 로고
    • Inactivation of influenza virus by solar radiation
    • PMID: 17880524
    • Sagripanti JL, Lytle CD (2007) Inactivation of influenza virus by solar radiation. Photochem Photobiol 83: 1278-1282. https://doi.org/10.1111/j.1751-1097.2007.00177.x PMID: 17880524
    • (2007) Photochem Photobiol , vol.83 , pp. 1278-1282
    • Sagripanti, J.L.1    Lytle, C.D.2
  • 45
    • 85018960377 scopus 로고    scopus 로고
    • Accessed 13 March 2017
    • Hong Kong Observatory. http://www.hko.gov.hk/. Accessed 13 March 2017.
  • 46
    • 84978056031 scopus 로고    scopus 로고
    • Challenges in real-time prediction of infectious disease: A case study of dengue in Thailand
    • PMID: 27304062
    • Reich N. G., Lauer S. A., Sakrejda K., Iamsirithaworn S., Hinjoy S., Suangtho P., et al. (2016). Challenges in Real-Time Prediction of Infectious Disease: A Case Study of Dengue in Thailand. PLoS Negl Trop Dis, 10(6), e0004761. https://doi.org/10.1371/journal.pntd.0004761 PMID: 27304062
    • (2016) PLoS Negl Trop Dis , vol.10 , Issue.6 , pp. e0004761
    • Reich, N.G.1    Lauer, S.A.2    Sakrejda, K.3    Iamsirithaworn, S.4    Hinjoy, S.5    Suangtho, P.6
  • 47
    • 84940740947 scopus 로고    scopus 로고
    • Flexible modeling of epidemics with an empirical Bayes framework
    • PMID: 26317693
    • Brooks L. C., Farrow D. C., Hyun S., Tibshirani R. J., & Rosenfeld R. (2015). Flexible modeling of epidemics with an empirical Bayes framework. PLoS Comput Biol, 11(8), e1004382. https://doi.org/10.1371/journal.pcbi.1004382 PMID: 26317693
    • (2015) PLoS Comput Biol , vol.11 , Issue.8 , pp. e1004382
    • Brooks, L.C.1    Farrow, D.C.2    Hyun, S.3    Tibshirani, R.J.4    Rosenfeld, R.5
  • 48
    • 85044557030 scopus 로고    scopus 로고
    • Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
    • Funk S., Camacho A., Kucharski A. J., Eggo R. M., & Edmunds W. J. (2016). Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics.
    • (2016) Epidemics
    • Funk, S.1    Camacho, A.2    Kucharski, A.J.3    Eggo, R.M.4    Edmunds, W.J.5
  • 50
    • 34548637081 scopus 로고    scopus 로고
    • Automated time series forecasting for biosurveillance
    • PMID: 17335120
    • Burkom H. S., Murphy S. P., & Shmueli G. (2007). Automated time series forecasting for biosurveillance. Statistics in medicine, 26(22), 4202-4218.pr https://doi.org/10.1002/sim.2835 PMID: 17335120
    • (2007) Statistics in Medicine , vol.26 , Issue.22 , pp. 4202-4218
    • Burkom, H.S.1    Murphy, S.P.2    Shmueli, G.3
  • 51
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google flu trends
    • PMID: 23457520
    • Dugas A. F., Jalalpour M., Gel Y., Levin S., Torcaso F., Igusa T., et al. (2013). Influenza forecasting with Google flu trends. PloS one, 8(2), e56176. https://doi.org/10.1371/journal.pone.0056176 PMID: 23457520
    • (2013) PloS One , vol.8 , Issue.2 , pp. e56176
    • Dugas, A.F.1    Jalalpour, M.2    Gel, Y.3    Levin, S.4    Torcaso, F.5    Igusa, T.6
  • 52
    • 77949771773 scopus 로고    scopus 로고
    • Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
    • PMID: 20209164
    • Soebiyanto R. P., Adimi F., & Kiang R. K. (2010). Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PloS one, 5(3), e9450. https://doi.org/10.1371/ journal.pone.0009450 PMID: 20209164
    • (2010) PloS One , vol.5 , Issue.3 , pp. e9450
    • Soebiyanto, R.P.1    Adimi, F.2    Kiang, R.K.3
  • 55
    • 84975753826 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
    • (2016) R: A Language and Environment for Statistical Computing
  • 57
    • 0031015557 scopus 로고    scopus 로고
    • The LASSO method for variable selection in the Cox model
    • PMID: 9044528
    • Tibshirani R. (1997). The LASSO method for variable selection in the Cox model. Statistics in Medicine 16 (4), 385-395. PMID: 9044528
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 385-395
    • Tibshirani, R.1
  • 59
    • 37249032736 scopus 로고    scopus 로고
    • Spatial smoothing and hot spot detection for cgh data using the fused lasso
    • Tibshirani R. and Wang P. (2007). Spatial smoothing and hot spot detection for cgh data using the fused lasso. Biostatistics Journal 9, 18-29.
    • (2007) Biostatistics Journal , vol.9 , pp. 18-29
    • Tibshirani, R.1    Wang, P.2
  • 62
    • 0003410290 scopus 로고
    • Princeton: Princeton university press
    • Hamilton J. D. (1994). Time series analysis (Vol. 2). Princeton: Princeton university press.
    • (1994) Time Series Analysis , vol.2
    • Hamilton, J.D.1
  • 66
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • Greenspan H., van Ginneken B., & Summers R. M. (2016). Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique. IEEE Transactions on Medical Imaging, 35(5), 1153-1159.
    • (2016) IEEE Transactions on Medical Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 67
    • 84997424229 scopus 로고    scopus 로고
    • Computational linguistics and deep learning
    • Manning C. D. (2016). Computational linguistics and deep learning. Computational Linguistics.
    • (2016) Computational Linguistics
    • Manning, C.D.1
  • 68
    • 84954372459 scopus 로고    scopus 로고
    • Deep learning in drug discovery
    • PMID: 27491648
    • Gawehn E., Hiss J. A., & Schneider G. (2016). Deep learning in drug discovery. Molecular Informatics, 35(1), 3-14. https://doi.org/10.1002/minf.201501008 PMID: 27491648
    • (2016) Molecular Informatics , vol.35 , Issue.1 , pp. 3-14
    • Gawehn, E.1    Hiss, J.A.2    Schneider, G.3
  • 69
    • 49549089775 scopus 로고    scopus 로고
    • Weights optimization of neural network via improved BCO approach
    • Zhang Y., & Wu L. (2008). Weights optimization of neural network via improved BCO approach. Progress In Electromagnetics Research, 83, 185-198.
    • (2008) Progress in Electromagnetics Research , vol.83 , pp. 185-198
    • Zhang, Y.1    Wu, L.2
  • 71
    • 84908212637 scopus 로고    scopus 로고
    • Accessed 13 March 2017
    • "Deep Learning Tutorial." http://deeplearning.net/tutorial/deeplearning.pdf. Accessed 13 March 2017
    • Deep Learning Tutorial
  • 74
    • 84894473312 scopus 로고    scopus 로고
    • Credit spreads as predictors of real-time economic activity: A Bayesian model-averaging approach
    • Faust J., Gilchrist S., Wright J. H., & Zakrajssek E. (2013). Credit spreads as predictors of real-time economic activity: a Bayesian model-averaging approach. Review of Economics and Statistics, 95(5), 1501-1519.
    • (2013) Review of Economics and Statistics , vol.95 , Issue.5 , pp. 1501-1519
    • Faust, J.1    Gilchrist, S.2    Wright, J.H.3    Zakrajssek, E.4
  • 75
    • 84880176182 scopus 로고    scopus 로고
    • Probabilistic wind vector forecasting using ensembles and Bayesian model averaging
    • McLean Sloughter J., Gneiting T., & Raftery A. E. (2013). Probabilistic wind vector forecasting using ensembles and Bayesian model averaging. Monthly Weather Review, 141(6), 2107-2119.
    • (2013) Monthly Weather Review , vol.141 , Issue.6 , pp. 2107-2119
    • McLean Sloughter, J.1    Gneiting, T.2    Raftery, A.E.3
  • 76
    • 85027933567 scopus 로고    scopus 로고
    • Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction
    • Wöhling T., Schöniger A., Gayler S., & Nowak W. (2015). Bayesian model averaging to explore the worth of data for soil-plant model selection and prediction. Water Resources Research, 51(4), 2825-2846.
    • (2015) Water Resources Research , vol.51 , Issue.4 , pp. 2825-2846
    • Wöhling, T.1    Schöniger, A.2    Gayler, S.3    Nowak, W.4
  • 78
    • 84877030184 scopus 로고    scopus 로고
    • A new surveillance and spatio-temporal visualization tool SIMID: SIMulation of Infectious Diseases using random networks and GIS
    • Ramirez-Ramirez L.L., Gel Y. R., Thompson M.E., De Villa E. and Mcpherson M. (2013). A new surveillance and spatio-temporal visualization tool SIMID: SIMulation of Infectious Diseases using random networks and GIS. Comput. Methods & Programs in Biomedicine, 110(3):455-470.
    • (2013) Comput. Methods & Programs in Biomedicine , vol.110 , Issue.3 , pp. 455-470
    • Ramirez-Ramirez, L.L.1    Gel, Y.R.2    Thompson, M.E.3    De Villa, E.4    Mcpherson, M.5
  • 79
    • 84898028869 scopus 로고    scopus 로고
    • Forecasting peaks of seasonal influenza epidemics
    • Nsoesie E.O., Marathe M, and Brownstein J.S. Forecasting peaks of seasonal influenza epidemics. PLoS ONE, 8(2), 06 2013.
    • (2013) PLoS ONE , vol.8 , Issue.2 , pp. 06
    • Nsoesie, E.O.1    Marathe, M.2    Brownstein, J.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.