메뉴 건너뛰기




Volumn 11, Issue 8, 2015, Pages

Flexible Modeling of Epidemics with an Empirical Bayes Framework

Author keywords

[No Author keywords available]

Indexed keywords

DISEASE CONTROL; DISEASES;

EID: 84940740947     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004382     Document Type: Article
Times cited : (114)

References (51)
  • 2
    • 0027369512 scopus 로고
    • How to improve monitoring and forecasting of disease patterns
    • Laporte RE, How to improve monitoring and forecasting of disease patterns. BMJ: British Medical Journal. 1993;307(6919):1573–1574. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1697783/pdf/bmj00052-0002.pdf. doi: 10.1136/bmj.307.6919.1573 8292938
    • (1993) BMJ: British Medical Journal , vol.307 , Issue.6919 , pp. 1573-1574
    • Laporte, R.E.1
  • 3
    • 84940769342 scopus 로고    scopus 로고
    • Announcement of Requirements and Registration for the Predict the Influenza Season Challenge
    • Centers for Disease Control and Prevention. Announcement of Requirements and Registration for the Predict the Influenza Season Challenge. Federal Register. 2013 Nov;78(227):70303–70305. Available from: https://www.federalregister.gov/articles/2013/11/25/2013-28198/announcement-of-requirements-and-registration-for-the-predict-the-influenza-season-challenge.
    • (2013) Federal Register , vol.78 , Issue.227 , pp. 70303-70305
  • 4
    • 0034486891 scopus 로고    scopus 로고
    • The mathematics of infectious diseases
    • Hethcote HW, The mathematics of infectious diseases. SIAM review. 2000;42(4):599–653. doi: 10.1137/S0036144500371907
    • (2000) SIAM review , vol.42 , Issue.4 , pp. 599-653
    • Hethcote, H.W.1
  • 5
    • 78049480117 scopus 로고    scopus 로고
    • Forcing versus feedback: epidemic malaria and monsoon rains in northwest India
    • Laneri K, Bhadra A, Ionides EL, Bouma M, Dhiman RC, Yadav RS, et al. Forcing versus feedback: epidemic malaria and monsoon rains in northwest India. PLoS computational biology. 2010;6(9):e1000898. doi: 10.1371/journal.pcbi.1000898 20824122
    • (2010) PLoS computational biology , vol.6 , Issue.9 , pp. 1000898
    • Laneri, K.1    Bhadra, A.2    Ionides, E.L.3    Bouma, M.4    Dhiman, R.C.5    Yadav, R.S.6
  • 6
    • 49649105737 scopus 로고    scopus 로고
    • Inapparent infections and cholera dynamics
    • King AA, Ionides EL, Pascual M, Bouma MJ, Inapparent infections and cholera dynamics. Nature. 2008;454(7206):877–880. doi: 10.1038/nature07084 18704085
    • (2008) Nature , vol.454 , Issue.7206 , pp. 877-880
    • King, A.A.1    Ionides, E.L.2    Pascual, M.3    Bouma, M.J.4
  • 8
    • 33846670320 scopus 로고    scopus 로고
    • Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions
    • Colizza V, Barrat A, Barthelemy M, Valleron AJ, Vespignani A, Modeling the worldwide spread of pandemic influenza: baseline case and containment interventions. PLoS Medicine. 2007;4(1):e13. doi: 10.1371/journal.pmed.0040013 17253899
    • (2007) PLoS Medicine , vol.4 , Issue.1 , pp. 13
    • Colizza, V.1    Barrat, A.2    Barthelemy, M.3    Valleron, A.J.4    Vespignani, A.5
  • 9
    • 33750863113 scopus 로고    scopus 로고
    • A comparative analysis of influenza vaccination programs
    • Bansal S, Pourbohloul B, Meyers LA, A comparative analysis of influenza vaccination programs. PLoS Medicine. 2006;3(10):e387. doi: 10.1371/journal.pmed.0030387 17020406
    • (2006) PLoS Medicine , vol.3 , Issue.10 , pp. 387
    • Bansal, S.1    Pourbohloul, B.2    Meyers, L.A.3
  • 11
    • 84884992539 scopus 로고    scopus 로고
    • FRED (A Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations
    • Grefenstette JJ, Brown ST, Rosenfeld R, DePasse J, Stone NT, Cooley PC, et al. FRED (A Framework for Reconstructing Epidemic Dynamics): an open-source software system for modeling infectious diseases and control strategies using census-based populations. BMC Public Health. 2013;13(1):940. doi: 10.1186/1471-2458-13-940 24103508
    • (2013) BMC Public Health , vol.13 , Issue.1 , pp. 940
    • Grefenstette, J.J.1    Brown, S.T.2    Rosenfeld, R.3    DePasse, J.4    Stone, N.T.5    Cooley, P.C.6
  • 12
    • 4444357184 scopus 로고    scopus 로고
    • Beta regression for modelling rates and proportions
    • Ferrari S, Cribari-Neto F, Beta regression for modelling rates and proportions. Journal of Applied Statistics. 2004;31(7):799–815. doi: 10.1080/0266476042000214501
    • (2004) Journal of Applied Statistics , vol.31 , Issue.7 , pp. 799-815
    • Ferrari, S.1    Cribari-Neto, F.2
  • 13
    • 70350757641 scopus 로고    scopus 로고
    • Improved estimators for a general class of beta regression models
    • Simas AB, Barreto-Souza W, Rocha AV, Improved estimators for a general class of beta regression models. Computational Statistics & Data Analysis. 2010;54(2):348–366. doi: 10.1016/j.csda.2009.08.017
    • (2010) Computational Statistics & Data Analysis , vol.54 , Issue.2 , pp. 348-366
    • Simas, A.B.1    Barreto-Souza, W.2    Rocha, A.V.3
  • 15
    • 0000627958 scopus 로고
    • The Box-Cox transformation technique: a review
    • Sakia R, The Box-Cox transformation technique: a review. The Statistician. 1992;p. 169–178. doi: 10.2307/2348250
    • (1992) The Statistician , pp. 169-178
    • Sakia, R.1
  • 17
    • 84874002846 scopus 로고    scopus 로고
    • Influenza forecasting with Google Flu Trends
    • Dugas AF, Jalalpour M, Gel Y, Levin S, Torcaso F, Igusa T, et al. Influenza forecasting with Google Flu Trends. PLoS ONE. 2013 Jan;8(2):e56176. Available from: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0056176#pone-0056176-g003. doi: 10.1371/journal.pone.0056176 23457520
    • (2013) PLoS ONE , vol.8 , Issue.2 , pp. 56176
    • Dugas, A.F.1    Jalalpour, M.2    Gel, Y.3    Levin, S.4    Torcaso, F.5    Igusa, T.6
  • 18
    • 84899439666 scopus 로고    scopus 로고
    • Influenza forecasting in human populations: a scoping review
    • Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE, Influenza forecasting in human populations: a scoping review. PLoS ONE. 2014 Jan;9(4):e94130. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0094130#pone-0094130-g002. doi: 10.1371/journal.pone.0094130 24714027
    • (2014) PLoS ONE , vol.9 , Issue.4 , pp. 94130
    • Chretien, J.P.1    George, D.2    Shaman, J.3    Chitale, R.A.4    McKenzie, F.E.5
  • 19
    • 84898044168 scopus 로고    scopus 로고
    • A systematic review of studies on forecasting the dynamics of influenza outbreaks
    • Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV, A systematic review of studies on forecasting the dynamics of influenza outbreaks. Influenza and Other Respiratory Viruses. 2014 May;8(3):309–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24373466. doi: 10.1111/irv.12226 24373466
    • (2014) Influenza and Other Respiratory Viruses , vol.8 , Issue.3 , pp. 309-316
    • Nsoesie, E.O.1    Brownstein, J.S.2    Ramakrishnan, N.3    Marathe, M.V.4
  • 20
    • 84870859794 scopus 로고    scopus 로고
    • Forecasting seasonal outbreaks of influenza
    • Shaman J, Karspeck A, Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences of the United States of America. 2012 Dec;109(50):20425–30. Available from: http://www.plosbiology.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pbio.1000316&representation=PDF http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3528592&tool=pmcentrez&rendertype=abstract. doi: 10.1073/pnas.1208772109 23184969
    • (2012) Proceedings of the National Academy of Sciences of the United States of America , vol.109 , Issue.50 , pp. 20425-20430
    • Shaman, J.1    Karspeck, A.2
  • 21
    • 77956312736 scopus 로고    scopus 로고
    • Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore
    • Ong JBS, Chen MIC, Cook AR, Lee HC, Lee VJ, Lin RTP, et al. Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in Singapore. PLoS ONE. 2010 Jan;5(4):e10036. Available from: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0010036. doi: 10.1371/journal.pone.0010036 20418945
    • (2010) PLoS ONE , vol.5 , Issue.4 , pp. 10036
    • Ong, J.B.S.1    Chen, M.I.C.2    Cook, A.R.3    Lee, H.C.4    Lee, V.J.5    Lin, R.T.P.6
  • 22
    • 84898028869 scopus 로고    scopus 로고
    • Forecasting peaks of seasonal influenza epidemics
    • Nsoesie EO, Mararthe M, Brownstein J, Forecasting peaks of seasonal influenza epidemics. PLoS currents. 2013 Jan;5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3712489&tool=pmcentrez&rendertype=abstract. doi: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc 23873050
    • (2013) PLoS currents , vol.5
    • Nsoesie, E.O.1    Mararthe, M.2    Brownstein, J.3
  • 23
    • 79960903930 scopus 로고    scopus 로고
    • Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method
    • Goldstein E, Cobey S, Takahashi S, Miller JC, Lipsitch M, Predicting the epidemic sizes of influenza A/H1N1, A/H3N2, and B: a statistical method. PLoS Medicine. 2011 Jul;8(7):e1001051. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3130020&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pmed.1001051 21750666
    • (2011) PLoS Medicine , vol.8 , Issue.7 , pp. 1001051
    • Goldstein, E.1    Cobey, S.2    Takahashi, S.3    Miller, J.C.4    Lipsitch, M.5
  • 24
    • 33644544404 scopus 로고    scopus 로고
    • Medication sales and syndromic surveillance, France
    • Vergu E, Grais RF, Sarter H, Fagot JP, Lambert B, Valleron AJ, et al. Medication sales and syndromic surveillance, France. Emerging Infectious Diseases. 2006 Mar;12(3):416–21. Available from: http://europepmc.org/articles/PMC3291431/?report=abstract. doi: 10.3201/eid1203.050573 16704778
    • (2006) Emerging Infectious Diseases , vol.12 , Issue.3 , pp. 416-421
    • Vergu, E.1    Grais, R.F.2    Sarter, H.3    Fagot, J.P.4    Lambert, B.5    Valleron, A.J.6
  • 25
    • 77949771773 scopus 로고    scopus 로고
    • Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters
    • Soebiyanto RP, Adimi F, Kiang RK, Modeling and predicting seasonal influenza transmission in warm regions using climatological parameters. PLoS ONE. 2010;5(3):e9450. doi: 10.1371/journal.pone.0009450 20209164
    • (2010) PLoS ONE , vol.5 , Issue.3 , pp. 9450
    • Soebiyanto, R.P.1    Adimi, F.2    Kiang, R.K.3
  • 26
    • 84921645203 scopus 로고    scopus 로고
    • Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska
    • Araz OM, Bentley D, Muelleman RL, Using Google Flu Trends data in forecasting influenza-like–illness related ED visits in Omaha, Nebraska. The American journal of emergency medicine. 2014;32(9):1016–1023. doi: 10.1016/j.ajem.2014.05.052 25037278
    • (2014) The American journal of emergency medicine , vol.32 , Issue.9 , pp. 1016-1023
    • Araz, O.M.1    Bentley, D.2    Muelleman, R.L.3
  • 29
    • 84940753549 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. CDC Announces Winner of the ‘Predict the Influenza Season Challenge’; 2014. [Online; accessed 18-May-2015]. Available from: http://www.cdc.gov/flu/news/predict-flu-challenge-winner.htm.
  • 30
    • 84890239936 scopus 로고    scopus 로고
    • Real-time influenza forecasts during the 2012–2013 season
    • Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M, Real-time influenza forecasts during the 2012–2013 season. Nature Communications. 2013;4:1–10. Available from: http://dx.doi.org/10.1038/nmcomms3837. doi: 10.1038/ncomms3837
    • (2013) Nature Communications , vol.4 , pp. 1-10
    • Shaman, J.1    Karspeck, A.2    Yang, W.3    Tamerius, J.4    Lipsitch, M.5
  • 31
    • 84901348387 scopus 로고    scopus 로고
    • Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics
    • Yang W, Karspeck A, Shaman J, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics. PLoS Computational Biology. 2014 Apr;10(4):e1003583. Available from: http://dx.plos.org/10.1371/journal.pcbi.1003583. doi: 10.1371/journal.pcbi.1003583 24762780
    • (2014) PLoS Computational Biology , vol.10 , Issue.4 , pp. 1003583
    • Yang, W.1    Karspeck, A.2    Shaman, J.3
  • 33
    • 84940776543 scopus 로고    scopus 로고
    • Centers for Disease Control and Prevention. Overview of Influenza Surveillance in the United States; 2013. [Online; accessed 29-August-2014]. Available from: http://www.cdc.gov/flu/weekly/overview.htm.
  • 34
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L, Detecting influenza epidemics using search engine query data. Nature. 2009 Feb;457(7232):1012–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19020500. doi: 10.1038/nature07634 19020500
    • (2009) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.H.2    Patel, R.S.3    Brammer, L.4    Smolinski, M.S.5    Brilliant, L.6
  • 35
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH, Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE. 2011 Jan;6(8):e23610. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3158788&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pone.0023610 21886802
    • (2011) PLoS ONE , vol.6 , Issue.8 , pp. 23610
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 36
  • 37
    • 84896056107 scopus 로고    scopus 로고
    • Big data. The parable of Google Flu: traps in big data analysis
    • Lazer D, Kennedy R, King G, Vespignani A, Big data. The parable of Google Flu: traps in big data analysis. Science (New York, NY). 2014 Mar;343(6176):1203–5. Available from: http://www.sciencemag.org/content/343/6176/1203.full. doi: 10.1126/science.1248506
    • (2014) Science (New York, NY) , vol.343 , Issue.6176 , pp. 1203-1205
    • Lazer, D.1    Kennedy, R.2    King, G.3    Vespignani, A.4
  • 38
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google Flu Trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW, What can digital disease detection learn from (an external revision to) Google Flu Trends? American Journal of Preventive Medicine. 2014;47(3):341–347. doi: 10.1016/j.amepre.2014.05.020 24997572
    • (2014) American Journal of Preventive Medicine , vol.47 , Issue.3 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 39
    • 84923276281 scopus 로고    scopus 로고
    • Separating Fact from Fear: Tracking Flu Infections on Twitter
    • Lamb A, Paul MJ, Dredze M, Separating Fact from Fear: Tracking Flu Infections on Twitter. In: HLT-NAACL; 2013. p. 789–795.
    • (2013) HLT-NAACL , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 40
    • 84987941980 scopus 로고    scopus 로고
    • Adaptive piecewise polynomial estimation via trend filtering
    • Tibshirani RJ, Adaptive piecewise polynomial estimation via trend filtering. The Annals of Statistics. 2014;42(1):285–323. doi: 10.1214/13-AOS1189
    • (2014) The Annals of Statistics , vol.42 , Issue.1 , pp. 285-323
    • Tibshirani, R.J.1
  • 41
    • 84940771783 scopus 로고    scopus 로고
    • Arnold TB, Tibshirani RJ. genlasso: Path algorithm for generalized lasso problems; 2014. R package version 1.3. Available from: http://CRAN.R-project.org/package=genlasso.
  • 42
    • 84940750538 scopus 로고    scopus 로고
    • Fox E, Dunson D. Bayesian nonparametric covariance regression. arXiv preprint arXiv:11012017. 2011;.
  • 47
    • 79961240792 scopus 로고    scopus 로고
    • Rcpp: Seamless R and C++ Integration
    • Eddelbuettel D, François R, Rcpp: Seamless R and C++ Integration. Journal of Statistical Software. 2011;40(8):1–18. Available from: http://www.jstatsoft.org/v40/i08/.
    • (2011) Journal of Statistical Software , vol.40 , Issue.8 , pp. 1-18
    • Eddelbuettel, D.1    François, R.2
  • 49
    • 84940760640 scopus 로고    scopus 로고
    • Wand M. KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995); 2015. R package version 2.23-14. Available from: http://CRAN.R-project.org/package=KernSmooth.
  • 50
    • 84885406698 scopus 로고    scopus 로고
    • GNU Parallel—The Command-Line Power Tool
    • Tange O, GNU Parallel—The Command-Line Power Tool. ;login: The USENIX Magazine. 2011 Feb;36(1):42–47. Available from: http://www.gnu.org/s/parallel.
    • (2011) login: The USENIX Magazine , vol.36 , Issue.1 , pp. 42-47
    • Tange, O.1
  • 51
    • 84940749253 scopus 로고    scopus 로고
    • Dahl DB. xtable: Export tables to LaTeX or HTML; 2014. R package version 1.7-4. Available from: http://CRAN.R-project.org/package=xtable.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.