-
1
-
-
79957755362
-
Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1
-
Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd S, Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecurity and bioterrorism: biodefense strategy, practice, and science. 2011; 9(2), 89–115.
-
(2011)
Biosecurity and bioterrorism: biodefense strategy, practice, and science
, vol.9
, Issue.2
, pp. 89-115
-
-
Lipsitch, M.1
Finelli, L.2
Heffernan, R.T.3
Leung, G.M.4
Redd, S.5
-
2
-
-
84946082068
-
-
WHO (2015) Influenza (Seasonal), Fact Sheet Number 211. Available at http://www.who.int/mediacentre/factsheets/fs211/en/index.html.
-
-
-
-
4
-
-
84901348387
-
Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics
-
Yang W, Karspeck A, Shaman J, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics." PLoS computational biology. 2014; 10, no. 4: e1003583. doi: 10.1371/journal.pcbi.1003583 24762780
-
(2014)
PLoS computational biology
, vol.10
, Issue.4
, pp. 1003583
-
-
Yang, W.1
Karspeck, A.2
Shaman, J.3
-
5
-
-
84924132651
-
Sham Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data
-
Yang W, Lipsitch M, Sham Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data. Proceedings of the National Academy of Sciences. 2015;112(9): 2723–2728.
-
(2015)
Proceedings of the National Academy of Sciences
, vol.112
, Issue.9
, pp. 2723-2728
-
-
Yang, W.1
Lipsitch, M.2
-
6
-
-
60549098239
-
Detecting influenza epidemics using search engine query data
-
Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L, Detecting influenza epidemics using search engine query data. Nature. 2009; 457, 1012–1014 doi: 10.1038/nature07634 19020500
-
(2009)
Nature
, vol.457
, pp. 1012-1014
-
-
Ginsberg, J.1
Mohebbi, M.H.2
Patel, R.S.3
Brammer, L.4
Smolinski, M.S.5
Brilliant, L.6
-
7
-
-
84861156434
-
Optimizing provider recruitment for influenza surveillance networks
-
Scarpino SV, Dimitrov NB, Meyers LA, Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol. 2012; 8, no. 4: e1002472. doi: 10.1371/journal.pcbi.1002472 22511860
-
(2012)
PLoS Comput Biol
, vol.8
, Issue.4
, pp. 1002472
-
-
Scarpino, S.V.1
Dimitrov, N.B.2
Meyers, L.A.3
-
8
-
-
55849100040
-
Using internet searches for influenza surveillance
-
Polgreen PM, Chen Y, Pennock DM, Nelson FD, Weinstein RA, Using internet searches for influenza surveillance. Clinical Infectious Diseases. 2008; 47(11):1443–1448. doi: 10.1086/593098 18954267
-
(2008)
Clinical Infectious Diseases
, vol.47
, Issue.11
, pp. 1443-1448
-
-
Polgreen, P.M.1
Chen, Y.2
Pennock, D.M.3
Nelson, F.D.4
Weinstein, R.A.5
-
9
-
-
84878474470
-
Monitoring influenza epidemics in China with search query from Baidu
-
Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS, Monitoring influenza epidemics in China with search query from Baidu. PLoS One 2013; 8:e64323. doi: 10.1371/journal.pone.0064323 23750192
-
(2013)
PLoS One
, vol.8
, pp. 64323
-
-
Yuan, Q.1
Nsoesie, E.O.2
Lv, B.3
Peng, G.4
Chunara, R.5
Brownstein, J.S.6
-
10
-
-
79955757514
-
The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic
-
Signorini A, Segre AM, Polgreen PM, The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 2011; 6, e19467. doi: 10.1371/journal.pone.0019467 21573238
-
(2011)
PLoS ONE
, vol.6
, pp. 19467
-
-
Signorini, A.1
Segre, A.M.2
Polgreen, P.M.3
-
12
-
-
84936930986
-
-
Chen L, Tozammel Hossain KSM, Butler P, Ramakrishnan N, and Prakash BA. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter using Temporal Topic Models. IEEE International Conference In Data Mining (ICDM), 2014; pp. 755–760. IEEE,.
-
-
-
-
13
-
-
84901331477
-
Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
-
McIver DJ, Brownstein JS, Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput. Biol. 2014;10, e1003581 doi: 10.1371/journal.pcbi.1003581 24743682
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. 1003581
-
-
McIver, D.J.1
Brownstein, J.S.2
-
14
-
-
84912131759
-
Global disease monitoring and forecasting with wikipedia
-
Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R, Global disease monitoring and forecasting with wikipedia. PLoS computational biology. 2014; 10(11), e1003892 doi: 10.1371/journal.pcbi.1003892 25392913
-
(2014)
PLoS computational biology
, vol.10
, Issue.11
, pp. 1003892
-
-
Generous, N.1
Fairchild, G.2
Deshpande, A.3
Del Valle, S.Y.4
Priedhorsky, R.5
-
15
-
-
84946089715
-
-
Crawley AW Flu near you: Comparing crowd-sourced reports of influenza-like illness to the CDC outpatient influenza-like illness surveillance network, October 2012 to March 2014. In 2014 CSTE Annual Conference. Cste, 2014.
-
-
-
-
16
-
-
84941360461
-
Flu Near You: Crowdsourced Symptom Reporting Spanning Two Influenza Seasons
-
Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wojick O, et al. Flu Near You: Crowdsourced Symptom Reporting Spanning Two Influenza Seasons. American Journal of Public Health. 2015; e1–e7.
-
(2015)
American Journal of Public Health
, pp. 1-7
-
-
Smolinski, M.S.1
Crawley, A.W.2
Baltrusaitis, K.3
Chunara, R.4
Olsen, J.M.5
Wojick, O.6
-
17
-
-
84918787542
-
Using Clinicians’ Search Query Data to Monitor Influenza Epidemics
-
Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS, Using Clinicians’ Search Query Data to Monitor Influenza Epidemics. Clinical Infectious Diseases. 2014; 59 (10): 1446–1450 doi: 10.1093/cid/ciu647 25115873
-
(2014)
Clinical Infectious Diseases
, vol.59
, Issue.10
, pp. 1446-1450
-
-
Santillana, M.1
Nsoesie, E.O.2
Mekaru, S.R.3
Scales, D.4
Brownstein, J.S.5
-
18
-
-
84873655668
-
When Google got flu wrong
-
Butler D, When Google got flu wrong. Nature. 2013; 494(7436):155. doi: 10.1038/494155a 23407515
-
(2013)
Nature
, vol.494
, Issue.7436
, pp. 155
-
-
Butler, D.1
-
19
-
-
80051831902
-
Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
-
Cook S, Conrad C, Fowlkes AL, Mohebbi MH, Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE. 2011; 6, e23610. doi: 10.1371/journal.pone.0023610 21886802
-
(2011)
PLoS ONE
, vol.6
, pp. 23610
-
-
Cook, S.1
Conrad, C.2
Fowlkes, A.L.3
Mohebbi, M.H.4
-
20
-
-
84887293587
-
Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
-
Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L, Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput. Biol. 2013; 9, e1003256. doi: 10.1371/journal.pcbi.1003256 24146603
-
(2013)
PLoS Comput. Biol
, vol.9
, pp. 1003256
-
-
Olson, D.R.1
Konty, K.J.2
Paladini, M.3
Viboud, C.4
Simonsen, L.5
-
21
-
-
84896056107
-
The parable of Google flu: traps in big data analysis
-
Lazer DM, Kennedy R, King L, Vespigniani A, The parable of Google flu: traps in big data analysis. Science. 2014; 343, 1203–1205. doi: 10.1126/science.1248506 24626916
-
(2014)
Science
, vol.343
, pp. 1203-1205
-
-
Lazer, D.M.1
Kennedy, R.2
King, L.3
Vespigniani, A.4
-
22
-
-
84906354517
-
What can digital disease detection learn from (an external revision to) Google flu trends?
-
Santillana M, Zhang DW, Althouse BM, Ayers JW, What can digital disease detection learn from (an external revision to) Google flu trends? Am. J. Prev. Med. 2014; 47, 341–347. doi: 10.1016/j.amepre.2014.05.020 24997572
-
(2014)
Am. J. Prev. Med.
, vol.47
, pp. 341-347
-
-
Santillana, M.1
Zhang, D.W.2
Althouse, B.M.3
Ayers, J.W.4
-
23
-
-
84930999810
-
Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions
-
Davidson M, Haim DA, Radin JM, Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions. Sci. Rep. 2015; 5
-
(2015)
Sci. Rep.
, vol.5
-
-
Davidson, M.1
Haim, D.A.2
Radin, J.M.3
-
24
-
-
84946053891
-
-
Yang S, Santillana M, and Kou SC. ARGO: a model for accurate estimation of influenza epidemics using Google search data. 2015. arXiv preprint arXiv:1505.00864.
-
-
-
-
25
-
-
85174477066
-
-
Lamb A, Paul MJ, and Dredze M. Separating Fact from Fear: Tracking Flu Infections on Twitter. HLT-NAACL. 2013.
-
-
-
-
26
-
-
84891941337
-
National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic
-
Broniatowski DA, Paul MJ, Dredze M, National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic. PloS one. 2013; 8(12), e83672. doi: 10.1371/journal.pone.0083672 24349542
-
(2013)
PloS one
, vol.8
, Issue.12
, pp. 83672
-
-
Broniatowski, D.A.1
Paul, M.J.2
Dredze, M.3
-
27
-
-
84974834856
-
-
Dredze M, Cheng R, Paul M, and Broniatowski D. HealthTweets.org: A Platform for Public Health Surveillance using Twitter. AAAI Workshop on the World Wide Web and Public Health Intelligence, 2014.
-
-
-
-
28
-
-
84891911558
-
Google disease trends: an update
-
Copeland P, Romano R, Zhang T, Hecht G, Zigmond D, Stefansen C, Google disease trends: an update. Int Soc Negl Trop Dis. 2013; 3.
-
(2013)
Int Soc Negl Trop Dis
, vol.3
-
-
Copeland, P.1
Romano, R.2
Zhang, T.3
Hecht, G.4
Zigmond, D.5
Stefansen, C.6
-
29
-
-
84946070601
-
Google Flu Trends gets a brand new engine
-
Stefansen C, Google Flu Trends gets a brand new engine. Google Research Blog. 2014.
-
(2014)
Google Research Blog
-
-
Stefansen, C.1
-
31
-
-
0030196364
-
Stacked regressions
-
Breiman L, Stacked regressions. Machine Learning.1996; 24, 49–64.
-
(1996)
Machine Learning
, vol.24
, pp. 49-64
-
-
Breiman, L.1
-
33
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund Y, Schapire RE, A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences.1997; 55.1: 119–139.
-
(1997)
Journal of computer and system sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
34
-
-
34748836339
-
-
Brownstein JS, and Mandl KD. Reengineering real time outbreak detection systems for influenza epidemic monitoring. In AMIA Annual Symposium Proceedings. American Medical Informatics Association. 2006; Vol. 2006, p. 866.
-
-
-
-
35
-
-
34548397297
-
Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City
-
Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F, Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City. PLoS Med. 2007; 4(8), e247. 17683196
-
(2007)
PLoS Med
, vol.4
, Issue.8
, pp. 247
-
-
Olson, D.R.1
Heffernan, R.T.2
Paladini, M.3
Konty, K.4
Weiss, D.5
Mostashari, F.6
-
36
-
-
84904961485
-
Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
-
Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLOS One. 2014; 9(7): e102429. doi: 10.1371/journal.pone.0102429 25072598
-
(2014)
PLOS One
, vol.9
, Issue.7
, pp. 102429
-
-
Viboud, C.1
Charu, V.2
Olson, D.3
Ballesteros, S.4
Gog, J.5
Khan, F.6
-
37
-
-
84890683224
-
Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience
-
Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, et al. Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. Clinical Microbiology and Infection. 2014; 20(1), 17–21. doi: 10.1111/1469-0691.12477 24350723
-
(2014)
Clinical Microbiology and Infection
, vol.20
, Issue.1
, pp. 17-21
-
-
Paolotti, D.1
Carnahan, A.2
Colizza, V.3
Eames, K.4
Edmunds, J.5
Gomes, G.6
-
38
-
-
75349096658
-
Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008
-
Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d'Espaignet ET, et al. Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep. 2009; 33(3): 316–22. 20043602
-
(2009)
Commun Dis Intell Q Rep
, vol.33
, Issue.3
, pp. 316-322
-
-
Dalton, C.1
Durrheim, D.2
Fejsa, J.3
Francis, L.4
Carlson, S.5
d'Espaignet, E.T.6
-
39
-
-
79957985746
-
Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance
-
Chan EH, Sahai V, Conrad C, Brownstein JS, Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis. 2011; 5:e1206 doi: 10.1371/journal.pntd.0001206 21647308
-
(2011)
PLoS Negl Trop Dis
, vol.5
, pp. 1206
-
-
Chan, E.H.1
Sahai, V.2
Conrad, C.3
Brownstein, J.S.4
-
40
-
-
79958006252
-
A new approach to monitoring dengue activity
-
Madoff LC, Fisman DN, Kass-Hout T, A new approach to monitoring dengue activity. PLoS Negl Trop Dis. 2011; 5:e1215. doi: 10.1371/journal.pntd.0001215 21647309
-
(2011)
PLoS Negl Trop Dis
, vol.5
, pp. 1215
-
-
Madoff, L.C.1
Fisman, D.N.2
Kass-Hout, T.3
-
41
-
-
84895745212
-
Evaluation of Internet-based dengue query data: Google Dengue Trends
-
Gluskin RT, Johansson M, Santillana M, Brownstein JS, Evaluation of Internet-based dengue query data: Google Dengue Trends. PLoS neglected tropical diseases. 2014; 8.2: e2713.
-
(2014)
PLoS neglected tropical diseases
, vol.8
, Issue.2
, pp. 2713
-
-
Gluskin, R.T.1
Johansson, M.2
Santillana, M.3
Brownstein, J.S.4
-
42
-
-
84886738403
-
Using search queries for malaria surveillance
-
Ocampo AJ, Chunara R, Brownstein JS, Using search queries for malaria surveillance, Thailand. Malaria journal. 2013; 12.1: 390.
-
(2013)
Thailand. Malaria journal
, vol.12
, Issue.1
, pp. 390
-
-
Ocampo, A.J.1
Chunara, R.2
Brownstein, J.S.3
-
43
-
-
84910107444
-
A Case Study of the New York City 2012–2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives
-
Nagar R, Yuan Q, Freifeld CC, Santillana M, Nojima A, Chunara R, et al. A Case Study of the New York City 2012–2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. Journal of medical Internet research. 2014; 16 (10) http://rsos.royalsocietypublishing.org/lookup/external-ref?access_num=21573238&link_type=MED&atom=%2Froyopensci%2F1%2F2%2F140095.atom
-
(2014)
Journal of medical Internet research
, vol.16
, Issue.10
-
-
Nagar, R.1
Yuan, Q.2
Freifeld, C.C.3
Santillana, M.4
Nojima, A.5
Chunara, R.6
|