메뉴 건너뛰기




Volumn 11, Issue 10, 2015, Pages

Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; SEARCH ENGINES; SOCIAL NETWORKING (ONLINE);

EID: 84946026274     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004513     Document Type: Article
Times cited : (344)

References (43)
  • 2
    • 84946082068 scopus 로고    scopus 로고
    • WHO (2015) Influenza (Seasonal), Fact Sheet Number 211. Available at http://www.who.int/mediacentre/factsheets/fs211/en/index.html.
  • 4
    • 84901348387 scopus 로고    scopus 로고
    • Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics
    • Yang W, Karspeck A, Shaman J, Comparison of filtering methods for the modeling and retrospective forecasting of influenza epidemics." PLoS computational biology. 2014; 10, no. 4: e1003583. doi: 10.1371/journal.pcbi.1003583 24762780
    • (2014) PLoS computational biology , vol.10 , Issue.4 , pp. 1003583
    • Yang, W.1    Karspeck, A.2    Shaman, J.3
  • 5
    • 84924132651 scopus 로고    scopus 로고
    • Sham Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data
    • Yang W, Lipsitch M, Sham Inference of seasonal and pandemic influenza transmission dynamics using ‘big’ surveillance data. Proceedings of the National Academy of Sciences. 2015;112(9): 2723–2728.
    • (2015) Proceedings of the National Academy of Sciences , vol.112 , Issue.9 , pp. 2723-2728
    • Yang, W.1    Lipsitch, M.2
  • 7
    • 84861156434 scopus 로고    scopus 로고
    • Optimizing provider recruitment for influenza surveillance networks
    • Scarpino SV, Dimitrov NB, Meyers LA, Optimizing provider recruitment for influenza surveillance networks. PLoS Comput Biol. 2012; 8, no. 4: e1002472. doi: 10.1371/journal.pcbi.1002472 22511860
    • (2012) PLoS Comput Biol , vol.8 , Issue.4 , pp. 1002472
    • Scarpino, S.V.1    Dimitrov, N.B.2    Meyers, L.A.3
  • 9
    • 84878474470 scopus 로고    scopus 로고
    • Monitoring influenza epidemics in China with search query from Baidu
    • Yuan Q, Nsoesie EO, Lv B, Peng G, Chunara R, Brownstein JS, Monitoring influenza epidemics in China with search query from Baidu. PLoS One 2013; 8:e64323. doi: 10.1371/journal.pone.0064323 23750192
    • (2013) PLoS One , vol.8 , pp. 64323
    • Yuan, Q.1    Nsoesie, E.O.2    Lv, B.3    Peng, G.4    Chunara, R.5    Brownstein, J.S.6
  • 10
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic
    • Signorini A, Segre AM, Polgreen PM, The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic. PLoS ONE 2011; 6, e19467. doi: 10.1371/journal.pone.0019467 21573238
    • (2011) PLoS ONE , vol.6 , pp. 19467
    • Signorini, A.1    Segre, A.M.2    Polgreen, P.M.3
  • 12
    • 84936930986 scopus 로고    scopus 로고
    • Chen L, Tozammel Hossain KSM, Butler P, Ramakrishnan N, and Prakash BA. Flu Gone Viral: Syndromic Surveillance of Flu on Twitter using Temporal Topic Models. IEEE International Conference In Data Mining (ICDM), 2014; pp. 755–760. IEEE,.
  • 13
    • 84901331477 scopus 로고    scopus 로고
    • Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time
    • McIver DJ, Brownstein JS, Wikipedia usage estimates prevalence of influenza-like illness in the United States in near real-time. PLoS Comput. Biol. 2014;10, e1003581 doi: 10.1371/journal.pcbi.1003581 24743682
    • (2014) PLoS Comput. Biol. , vol.10 , pp. 1003581
    • McIver, D.J.1    Brownstein, J.S.2
  • 15
    • 84946089715 scopus 로고    scopus 로고
    • Crawley AW Flu near you: Comparing crowd-sourced reports of influenza-like illness to the CDC outpatient influenza-like illness surveillance network, October 2012 to March 2014. In 2014 CSTE Annual Conference. Cste, 2014.
  • 18
    • 84873655668 scopus 로고    scopus 로고
    • When Google got flu wrong
    • Butler D, When Google got flu wrong. Nature. 2013; 494(7436):155. doi: 10.1038/494155a 23407515
    • (2013) Nature , vol.494 , Issue.7436 , pp. 155
    • Butler, D.1
  • 19
    • 80051831902 scopus 로고    scopus 로고
    • Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic
    • Cook S, Conrad C, Fowlkes AL, Mohebbi MH, Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS ONE. 2011; 6, e23610. doi: 10.1371/journal.pone.0023610 21886802
    • (2011) PLoS ONE , vol.6 , pp. 23610
    • Cook, S.1    Conrad, C.2    Fowlkes, A.L.3    Mohebbi, M.H.4
  • 20
    • 84887293587 scopus 로고    scopus 로고
    • Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales
    • Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L, Reassessing Google flu trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput. Biol. 2013; 9, e1003256. doi: 10.1371/journal.pcbi.1003256 24146603
    • (2013) PLoS Comput. Biol , vol.9 , pp. 1003256
    • Olson, D.R.1    Konty, K.J.2    Paladini, M.3    Viboud, C.4    Simonsen, L.5
  • 21
    • 84896056107 scopus 로고    scopus 로고
    • The parable of Google flu: traps in big data analysis
    • Lazer DM, Kennedy R, King L, Vespigniani A, The parable of Google flu: traps in big data analysis. Science. 2014; 343, 1203–1205. doi: 10.1126/science.1248506 24626916
    • (2014) Science , vol.343 , pp. 1203-1205
    • Lazer, D.M.1    Kennedy, R.2    King, L.3    Vespigniani, A.4
  • 22
    • 84906354517 scopus 로고    scopus 로고
    • What can digital disease detection learn from (an external revision to) Google flu trends?
    • Santillana M, Zhang DW, Althouse BM, Ayers JW, What can digital disease detection learn from (an external revision to) Google flu trends? Am. J. Prev. Med. 2014; 47, 341–347. doi: 10.1016/j.amepre.2014.05.020 24997572
    • (2014) Am. J. Prev. Med. , vol.47 , pp. 341-347
    • Santillana, M.1    Zhang, D.W.2    Althouse, B.M.3    Ayers, J.W.4
  • 23
    • 84930999810 scopus 로고    scopus 로고
    • Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions
    • Davidson M, Haim DA, Radin JM, Using Networks to Combine Big Data and Traditional Surveillance to Improve Influenza Predictions. Sci. Rep. 2015; 5
    • (2015) Sci. Rep. , vol.5
    • Davidson, M.1    Haim, D.A.2    Radin, J.M.3
  • 24
    • 84946053891 scopus 로고    scopus 로고
    • Yang S, Santillana M, and Kou SC. ARGO: a model for accurate estimation of influenza epidemics using Google search data. 2015. arXiv preprint arXiv:1505.00864.
  • 25
    • 85174477066 scopus 로고    scopus 로고
    • Lamb A, Paul MJ, and Dredze M. Separating Fact from Fear: Tracking Flu Infections on Twitter. HLT-NAACL. 2013.
  • 26
    • 84891941337 scopus 로고    scopus 로고
    • National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic
    • Broniatowski DA, Paul MJ, Dredze M, National and local influenza surveillance through twitter: An analysis of the 2012–2013 influenza epidemic. PloS one. 2013; 8(12), e83672. doi: 10.1371/journal.pone.0083672 24349542
    • (2013) PloS one , vol.8 , Issue.12 , pp. 83672
    • Broniatowski, D.A.1    Paul, M.J.2    Dredze, M.3
  • 27
    • 84974834856 scopus 로고    scopus 로고
    • Dredze M, Cheng R, Paul M, and Broniatowski D. HealthTweets.org: A Platform for Public Health Surveillance using Twitter. AAAI Workshop on the World Wide Web and Public Health Intelligence, 2014.
  • 29
    • 84946070601 scopus 로고    scopus 로고
    • Google Flu Trends gets a brand new engine
    • Stefansen C, Google Flu Trends gets a brand new engine. Google Research Blog. 2014.
    • (2014) Google Research Blog
    • Stefansen, C.1
  • 31
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L, Stacked regressions. Machine Learning.1996; 24, 49–64.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 33
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y, Schapire RE, A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences.1997; 55.1: 119–139.
    • (1997) Journal of computer and system sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 34
    • 34748836339 scopus 로고    scopus 로고
    • Brownstein JS, and Mandl KD. Reengineering real time outbreak detection systems for influenza epidemic monitoring. In AMIA Annual Symposium Proceedings. American Medical Informatics Association. 2006; Vol. 2006, p. 866.
  • 35
    • 34548397297 scopus 로고    scopus 로고
    • Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City
    • Olson DR, Heffernan RT, Paladini M, Konty K, Weiss D, Mostashari F, Monitoring the impact of influenza by age: emergency department fever and respiratory complaint surveillance in New York City. PLoS Med. 2007; 4(8), e247. 17683196
    • (2007) PLoS Med , vol.4 , Issue.8 , pp. 247
    • Olson, D.R.1    Heffernan, R.T.2    Paladini, M.3    Konty, K.4    Weiss, D.5    Mostashari, F.6
  • 36
    • 84904961485 scopus 로고    scopus 로고
    • Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US
    • Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume electronic medical claims data to monitor local and regional influenza activity in the US. PLOS One. 2014; 9(7): e102429. doi: 10.1371/journal.pone.0102429 25072598
    • (2014) PLOS One , vol.9 , Issue.7 , pp. 102429
    • Viboud, C.1    Charu, V.2    Olson, D.3    Ballesteros, S.4    Gog, J.5    Khan, F.6
  • 37
    • 84890683224 scopus 로고    scopus 로고
    • Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience
    • Paolotti D, Carnahan A, Colizza V, Eames K, Edmunds J, Gomes G, et al. Web-based participatory surveillance of infectious diseases: the Influenzanet participatory surveillance experience. Clinical Microbiology and Infection. 2014; 20(1), 17–21. doi: 10.1111/1469-0691.12477 24350723
    • (2014) Clinical Microbiology and Infection , vol.20 , Issue.1 , pp. 17-21
    • Paolotti, D.1    Carnahan, A.2    Colizza, V.3    Eames, K.4    Edmunds, J.5    Gomes, G.6
  • 38
    • 75349096658 scopus 로고    scopus 로고
    • Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008
    • Dalton C, Durrheim D, Fejsa J, Francis L, Carlson S, d'Espaignet ET, et al. Flutracking: a weekly Australian community online survey of influenza-like illness in 2006, 2007 and 2008. Commun Dis Intell Q Rep. 2009; 33(3): 316–22. 20043602
    • (2009) Commun Dis Intell Q Rep , vol.33 , Issue.3 , pp. 316-322
    • Dalton, C.1    Durrheim, D.2    Fejsa, J.3    Francis, L.4    Carlson, S.5    d'Espaignet, E.T.6
  • 39
    • 79957985746 scopus 로고    scopus 로고
    • Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance
    • Chan EH, Sahai V, Conrad C, Brownstein JS, Using Web search query data to monitor dengue epidemics: a new model for neglected tropical disease surveillance. PLoS Negl Trop Dis. 2011; 5:e1206 doi: 10.1371/journal.pntd.0001206 21647308
    • (2011) PLoS Negl Trop Dis , vol.5 , pp. 1206
    • Chan, E.H.1    Sahai, V.2    Conrad, C.3    Brownstein, J.S.4
  • 40
    • 79958006252 scopus 로고    scopus 로고
    • A new approach to monitoring dengue activity
    • Madoff LC, Fisman DN, Kass-Hout T, A new approach to monitoring dengue activity. PLoS Negl Trop Dis. 2011; 5:e1215. doi: 10.1371/journal.pntd.0001215 21647309
    • (2011) PLoS Negl Trop Dis , vol.5 , pp. 1215
    • Madoff, L.C.1    Fisman, D.N.2    Kass-Hout, T.3
  • 43
    • 84910107444 scopus 로고    scopus 로고
    • A Case Study of the New York City 2012–2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives
    • Nagar R, Yuan Q, Freifeld CC, Santillana M, Nojima A, Chunara R, et al. A Case Study of the New York City 2012–2013 Influenza Season With Daily Geocoded Twitter Data From Temporal and Spatiotemporal Perspectives. Journal of medical Internet research. 2014; 16 (10) http://rsos.royalsocietypublishing.org/lookup/external-ref?access_num=21573238&link_type=MED&atom=%2Froyopensci%2F1%2F2%2F140095.atom
    • (2014) Journal of medical Internet research , vol.16 , Issue.10
    • Nagar, R.1    Yuan, Q.2    Freifeld, C.C.3    Santillana, M.4    Nojima, A.5    Chunara, R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.