메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 663-670

Nonparametric variational inference

Author keywords

[No Author keywords available]

Indexed keywords

CONJUGACY; GRAPHICAL MODEL; KERNEL DENSITY ESTIMATION; LOGISTIC REGRESSION MODELS; LOWER BOUNDS; MARGINAL LIKELIHOOD; MULTIPLE KERNELS; MULTIPLE MODES; NON-PARAMETRIC; NONLINEAR MATRIX; PREDICTIVE PERFORMANCE; VARIATIONAL APPROXIMATION; VARIATIONAL INFERENCE; VARIATIONAL METHODS; VARIATIONAL PARAMETERS;

EID: 84867112898     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (114)

References (19)
  • 3
    • 84898985963 scopus 로고    scopus 로고
    • Approximating posterior distributions in belief networks using mixtures
    • Bishop, C.M., Lawrence, N., Jaakkola, T., and Jordan, M.I. Approximating posterior distributions in belief networks using mixtures. NIPS, 1998.
    • (1998) NIPS
    • Bishop, C.M.1    Lawrence, N.2    Jaakkola, T.3    Jordan, M.I.4
  • 4
    • 71149088292 scopus 로고    scopus 로고
    • Split variational inference
    • ACM
    • Bouchard, G. and Zoeter, O. Split variational inference. In ICML, pp. 57-64. ACM, 2009.
    • (2009) ICML , pp. 57-64
    • Bouchard, G.1    Zoeter, O.2
  • 5
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for largescale models of discrete choice
    • Braun, M. and McAuliffe, J. Variational inference for largescale models of discrete choice. Journal of the American Statistical Association, 105(489):324-335, 2010.
    • (2010) Journal of the American Statistical Association , vol.105 , Issue.489 , pp. 324-335
    • Braun, M.1    McAuliffe, J.2
  • 6
  • 7
    • 34547474118 scopus 로고    scopus 로고
    • Blind separation of nonlinear mixtures by variational bayesian learning
    • Honkela, A., Valpola, H., Ilin, A., and Karhunen, J. Blind separation of nonlinear mixtures by variational bayesian learning. Digital Signal Processing, 17(5):914-934, 2007.
    • (2007) Digital Signal Processing , vol.17 , Issue.5 , pp. 914-934
    • Honkela, A.1    Valpola, H.2    Ilin, A.3    Karhunen, J.4
  • 9
    • 77957961174 scopus 로고    scopus 로고
    • Particle-based variational inference for continuous systems
    • Ihler, A.T., Frank, A.J., and Smyth, P. Particle-based variational inference for continuous systems. NIPS, 2009.
    • (2009) NIPS
    • Ihler, A.T.1    Frank, A.J.2    Smyth, P.3
  • 10
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola, T.S. and Jordan, M.I. Bayesian parameter estimation via variational methods. Statistics and Computing, 10(1):25-37, 2000.
    • (2000) Statistics and Computing , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 11
    • 0001837853 scopus 로고    scopus 로고
    • Improving the mean field approximation via the use of mixture distributions
    • Jaakola, T.S. and Jordan, M.I. Improving the mean field approximation via the use of mixture distributions. In Learning Graphical Models. 1998.
    • (1998) Learning Graphical Models
    • Jaakola, T.S.1    Jordan, M.I.2
  • 12
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 13
    • 85162389868 scopus 로고    scopus 로고
    • Variational bounds for mixed-data factor analysis
    • Khan, M.E., Marlin, B., Bouchard, G., and Murphy, K. Variational bounds for mixed-data factor analysis. In NIPS 23. 2010.
    • (2010) NIPS , vol.23
    • Khan, M.E.1    Marlin, B.2    Bouchard, G.3    Murphy, K.4
  • 15
    • 1542714899 scopus 로고    scopus 로고
    • Reducing the variability in cDNA microarray image processing by Bayesian inference
    • Lawrence, N.D., Milo, M., Niranjan, M., Rashbass, P., and Soullier, S. Reducing the variability in cDNA microarray image processing by Bayesian inference. Bioinformatics, 20(4):518-526, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 518-526
    • Lawrence, N.D.1    Milo, M.2    Niranjan, M.3    Rashbass, P.4    Soullier, S.5
  • 16
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay, D.J.C. Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469-505, 1995.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.J.C.1
  • 18
    • 85057196821 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • Brooks, S., German, A., Jones, G., and Meng, X.-L. (eds.), Chapman & Hall / CRC Press
    • Neal, R.M. MCMC using Hamiltonian dynamics. In Brooks, S., German, A., Jones, G., and Meng, X.-L. (eds.), Handbook of Markov Chain Monte Carlo. Chapman & Hall / CRC Press, 2011.
    • (2011) Handbook of Markov Chain Monte Carlo
    • Neal, R.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.