메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3116-3124

MoCap-guided data augmentation for 3D pose estimation in the wild

Author keywords

[No Author keywords available]

Indexed keywords

3D HUMAN POSE ESTIMATION; 3D MOTION CAPTURE; 3D POSE ESTIMATION; ARTIFICIAL IMAGE; CONTROLLED ENVIRONMENT; DATA AUGMENTATION; STATE OF THE ART; SYNTHETIC IMAGES;

EID: 85018863233     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (283)

References (45)
  • 1
    • 33644830736 scopus 로고    scopus 로고
    • Recovering 3D human pose from monocular images
    • A. Agarwal and B. Triggs. Recovering 3D human pose from monocular images. PAMI, 28(1): 44-58, 2006.
    • (2006) PAMI , vol.28 , Issue.1 , pp. 44-58
    • Agarwal, A.1    Triggs, B.2
  • 2
    • 84959233857 scopus 로고    scopus 로고
    • Pose-conditioned joint angle limits for 3D human pose reconstruction
    • I. Akhter and M. Black. Pose-conditioned joint angle limits for 3D human pose reconstruction. In CVPR, 2015.
    • (2015) CVPR
    • Akhter, I.1    Black, M.2
  • 3
    • 84911448580 scopus 로고    scopus 로고
    • 2D human pose estimation: New benchmark and state-of-the-art analysis
    • M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2D human pose estimation: New benchmark and state-of-the-art analysis. In CVPR, 2014.
    • (2014) CVPR
    • Andriluka, M.1    Pishchulin, L.2    Gehler, P.3    Schiele, B.4
  • 5
    • 75149188375 scopus 로고    scopus 로고
    • Twin Gaussian processes for structured prediction
    • L. Bo and C. Sminchisescu. Twin Gaussian processes for structured prediction. IJCV, 87(1-2): 28-52, 2010.
    • (2010) IJCV , vol.87 , Issue.1-2 , pp. 28-52
    • Bo, L.1    Sminchisescu, C.2
  • 6
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 7
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.L.2
  • 9
    • 51949098114 scopus 로고    scopus 로고
    • A mixed generative-discriminative framework for pedestrian classification
    • M. Enzweiler and D. M. Gavrila. A mixed generative-discriminative framework for pedestrian classification. In CVPR, 2008.
    • (2008) CVPR
    • Enzweiler, M.1    Gavrila, D.M.2
  • 10
    • 84959204128 scopus 로고    scopus 로고
    • Pose locality constrained representation for 3D human pose reconstruction
    • X. Fan, K. Zheng, Y. Zhou, and S. Wang. Pose locality constrained representation for 3D human pose reconstruction. In ECCV, 2014.
    • (2014) ECCV
    • Fan, X.1    Zheng, K.2    Zhou, Y.3    Wang, S.4
  • 11
    • 84959238601 scopus 로고    scopus 로고
    • Learning scene-specific pedestrian detectors without real data
    • H. Hattori, V. N. Boddeti, K. M. Kitani, and T. Kanade. Learning scene-specific pedestrian detectors without real data. In CVPR, 2015.
    • (2015) CVPR
    • Hattori, H.1    Boddeti, V.N.2    Kitani, K.M.3    Kanade, T.4
  • 12
    • 33846404527 scopus 로고    scopus 로고
    • Character animation from 2D pictures and 3D motion data
    • A. Hornung, E. Dekkers, and L. Kobbelt. Character animation from 2D pictures and 3D motion data. ACM Trans. Graph., 26(1), 2007.
    • (2007) ACM Trans. Graph. , vol.26 , Issue.1
    • Hornung, A.1    Dekkers, E.2    Kobbelt, L.3
  • 13
    • 84903127719 scopus 로고    scopus 로고
    • Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments
    • C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments. PAMI, 36(7): 1325-1339, 2014.
    • (2014) PAMI , vol.36 , Issue.7 , pp. 1325-1339
    • Ionescu, C.1    Papava, D.2    Olaru, V.3    Sminchisescu, C.4
  • 14
    • 84943153743 scopus 로고    scopus 로고
    • Reading text in the wild with convolutional neural networks
    • M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Reading text in the wild with convolutional neural networks. IJCV, 116(1): 1-20, 2016.
    • (2016) IJCV , vol.116 , Issue.1 , pp. 1-20
    • Jaderberg, M.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 16
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 17
    • 80052884516 scopus 로고    scopus 로고
    • Learning effective human pose estimation from inaccurate annotation
    • S. Johnson and M. Everingham. Learning effective human pose estimation from inaccurate annotation. In CVPR, 2011.
    • (2011) CVPR
    • Johnson, S.1    Everingham, M.2
  • 18
    • 85085406862 scopus 로고    scopus 로고
    • Depth sweep regression forests for estimating 3D human pose from images
    • I. Kostrikov and J. Gall. Depth sweep regression forests for estimating 3D human pose from images. In BMVC, 2014.
    • (2014) BMVC
    • Kostrikov, I.1    Gall, J.2
  • 19
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 84973861613 scopus 로고    scopus 로고
    • Maximum-margin structured learning with deep networks for 3D human pose estimation
    • S. Li, W. Zhang, and A. B. Chan. Maximum-margin structured learning with deep networks for 3D human pose estimation. In ICCV, 2015.
    • (2015) ICCV
    • Li, S.1    Zhang, W.2    Chan, A.B.3
  • 21
    • 77951199235 scopus 로고    scopus 로고
    • Relevant feature selection for human pose estimation and localization in cluttered images
    • R. Okada and S. Soatto. Relevant feature selection for human pose estimation and localization in cluttered images. In ECCV, 2008.
    • (2008) ECCV
    • Okada, R.1    Soatto, S.2
  • 22
    • 84951944568 scopus 로고    scopus 로고
    • Articulated pose estimation with tiny synthetic videos
    • D. Park and D. Ramanan. Articulated pose estimation with tiny synthetic videos. In CVPRW, 2015.
    • (2015) CVPRW
    • Park, D.1    Ramanan, D.2
  • 23
    • 84973922826 scopus 로고    scopus 로고
    • Learning deep object detectors from 3D models
    • X. Peng, B. Sun, K. Ali, and K. Saenko. Learning deep object detectors from 3D models. In ICCV, 2015.
    • (2015) ICCV
    • Peng, X.1    Sun, B.2    Ali, K.3    Saenko, K.4
  • 26
    • 84860534174 scopus 로고    scopus 로고
    • Fast human pose detection using randomized hierarchical cascades of rejectors
    • G. Rogez, J. Rihan, C. Orrite, and P. Torr. Fast human pose detection using randomized hierarchical cascades of rejectors. IJCV, 99(1): 25-52, 2012.
    • (2012) IJCV , vol.99 , Issue.1 , pp. 25-52
    • Rogez, G.1    Rihan, J.2    Orrite, C.3    Torr, P.4
  • 27
    • 84959228647 scopus 로고    scopus 로고
    • First-person pose recognition using egocentric workspaces
    • G. Rogez, J. Supancic, and D. Ramanan. First-person pose recognition using egocentric workspaces. In CVPR, 2015.
    • (2015) CVPR
    • Rogez, G.1    Supancic, J.2    Ramanan, D.3
  • 28
    • 77955915217 scopus 로고    scopus 로고
    • Hands in action: Real-time 3D reconstruction of hands in interaction with objects
    • J. Romero, H. Kjellstrom, and D. Kragic. Hands in action: real-time 3D reconstruction of hands in interaction with objects. In ICRA, 2010.
    • (2010) ICRA
    • Romero, J.1    Kjellstrom, H.2    Kragic, D.3
  • 29
    • 0345414554 scopus 로고    scopus 로고
    • Fast pose estimation with parameter-sensitive hashing
    • G. Shakhnarovich, P. A. Viola, and T. Darrell. Fast pose estimation with parameter-sensitive hashing. In ICCV, 2003.
    • (2003) ICCV
    • Shakhnarovich, G.1    Viola, P.A.2    Darrell, T.3
  • 31
  • 33
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR, Abs/1409.1556
    • Simonyan, K.1    Zisserman, A.2
  • 34
    • 84973860892 scopus 로고    scopus 로고
    • Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views
    • H. Su, C. Ruizhongtai Qi, Y. Li, and L. J. Guibas. Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In ICCV, 2015.
    • (2015) ICCV
    • Su, H.1    Ruizhongtai Qi, C.2    Li, Y.3    Guibas, L.J.4
  • 35
    • 84986269202 scopus 로고    scopus 로고
    • Direct prediction of 3d body poses from motion compensated sequences
    • Bugra Tekin, Artem Rozantsev, Vincent Lepetit, and Pascal Fua. Direct prediction of 3d body poses from motion compensated sequences. In CVPR, 2016.
    • (2016) CVPR
    • Tekin, B.1    Rozantsev, A.2    Lepetit, V.3    Fua, P.4
  • 36
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 37
    • 84911381180 scopus 로고    scopus 로고
    • DeepPose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 38
    • 84911417648 scopus 로고    scopus 로고
    • Robust estimation of 3D human poses from a single image
    • C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao. Robust estimation of 3D human poses from a single image. In CVPR, 2014.
    • (2014) CVPR
    • Wang, C.1    Wang, Y.2    Lin, Z.3    Yuille, A.L.4    Gao, W.5
  • 41
    • 84986295323 scopus 로고    scopus 로고
    • End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation
    • W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Yang, W.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 42
    • 84986277851 scopus 로고    scopus 로고
    • A dual-source approach for 3D pose estimation from a single image
    • H. Yasin, U. Iqbal, B. Krüger, A. Weber, and J. Gall. A dual-source approach for 3D pose estimation from a single image. In CVPR, 2016.
    • (2016) CVPR
    • Yasin, H.1    Iqbal, U.2    Krüger, B.3    Weber, A.4    Gall, J.5
  • 43
    • 84959252889 scopus 로고    scopus 로고
    • Spatio-temporal matching for human detection in video
    • F. Zhou and F. De la Torre. Spatio-temporal matching for human detection in video. In ECCV, 2014.
    • (2014) ECCV
    • Zhou, F.1    De La Torre, F.2
  • 44
    • 84986256969 scopus 로고    scopus 로고
    • Sparseness meets deepness: 3D human pose estimation from monocular video
    • X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, and K. Daniilidis. Sparseness meets deepness: 3D human pose estimation from monocular video. In CVPR, 2016.
    • (2016) CVPR
    • Zhou, X.1    Zhu, M.2    Leonardos, S.3    Derpanis, K.4    Daniilidis, K.5
  • 45
    • 84959215411 scopus 로고    scopus 로고
    • The stitched puppet: A graphical model of 3D human shape and pose
    • S. Zuffi and M. J. Black. The stitched puppet: A graphical model of 3D human shape and pose. In CVPR, 2015.
    • (2015) CVPR
    • Zuffi, S.1    Black, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.