메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2848-2856

Maximum-margin structured learning with deep networks for 3D human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; COST FUNCTIONS; FEATURE EXTRACTION; GESTURE RECOGNITION; NEURAL NETWORKS; STATISTICAL TESTS; VECTOR SPACES;

EID: 84973861613     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.326     Document Type: Conference Paper
Times cited : (228)

References (34)
  • 1
    • 84897553529 scopus 로고    scopus 로고
    • Deep canonical correlation analysis
    • 3, May
    • G. Andrew, R. Arora, J. Bilmes, and K. Livescu. Deep canonical correlation analysis. In ICML, volume 28, pages 1247-1255, May 2013. 3
    • (2013) ICML , vol.28 , pp. 1247-1255
    • Andrew, G.1    Arora, R.2    Bilmes, J.3    Livescu, K.4
  • 3
    • 84882266451 scopus 로고    scopus 로고
    • Better mixing via deep representations
    • 2
    • Y. Bengio, G. Mesnil, Y. Dauphin, and S. Rifai. Better mixing via deep representations. In ICML, pages 552-560, 2013. 2
    • (2013) ICML , pp. 552-560
    • Bengio, Y.1    Mesnil, G.2    Dauphin, Y.3    Rifai, S.4
  • 4
    • 84887329445 scopus 로고    scopus 로고
    • 3d pictorial structures for multiple view articulated pose estimation
    • 2
    • M. Burenius, J. Sullivan, and S. Carlsson. 3d pictorial structures for multiple view articulated pose estimation. In CVPR, pages 3618-3625, 2013. 2
    • (2013) CVPR , pp. 3618-3625
    • Burenius, M.1    Sullivan, J.2    Carlsson, S.3
  • 5
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • 2
    • X. Chen and A. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014. 2
    • (2014) NIPS
    • Chen, X.1    Yuille, A.2
  • 6
    • 5444223518 scopus 로고    scopus 로고
    • Articulated body motion capture by stochastic search
    • 6
    • J. Deutscher and I. Reid. Articulated body motion capture by stochastic search. IJCV, 61 (2): 185-205, 2005. 6
    • (2005) IJCV , vol.61 , Issue.2 , pp. 185-205
    • Deutscher, J.1    Reid, I.2
  • 8
    • 84898906904 scopus 로고    scopus 로고
    • Better appearance models for pictorial structures
    • 1, 2
    • M. Eichner and V. Ferrari. Better appearance models for pictorial structures. In BMVC, pages 1-11, 2009. 1, 2
    • (2009) BMVC , pp. 1-11
    • Eichner, M.1    Ferrari, V.2
  • 9
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • 1
    • Felzenszwalb, P. F., Huttenlocher, and D. P. Pictorial structures for object recognition. IJCV, pages 55-79, 2005. 1
    • (2005) IJCV , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 10
    • 77953208029 scopus 로고    scopus 로고
    • Structural SVM for visual localization and continuous state estimation
    • 1
    • C. Ionescu, L. Bo, and C. Sminchisescu. Structural SVM for visual localization and continuous state estimation. In ICCV, pages 1157-1164, 2009. 1
    • (2009) ICCV , pp. 1157-1164
    • Ionescu, C.1    Bo, L.2    Sminchisescu, C.3
  • 11
    • 84856631919 scopus 로고    scopus 로고
    • Latent structured models for human pose estimation
    • 1
    • C. Ionescu, F. Li, and C. Sminchisescu. Latent structured models for human pose estimation. In ICCV, pages 2220-2227, 2011. 1
    • (2011) ICCV , pp. 2220-2227
    • Ionescu, C.1    Li, F.2    Sminchisescu, C.3
  • 12
    • 84903127719 scopus 로고    scopus 로고
    • Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments
    • 1, 5, 6, 7, 8
    • C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE TPAMI, 2014. 1, 5, 6, 7, 8
    • (2014) IEEE TPAMI
    • Ionescu, C.1    Papava, D.2    Olaru, V.3    Sminchisescu, C.4
  • 13
    • 85083954541 scopus 로고    scopus 로고
    • Deep structured output learning for unconstrained text recognition
    • 2, 3
    • M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Deep structured output learning for unconstrained text recognition. ICLR, 2015. 2, 3
    • (2015) ICLR
    • Jaderberg, M.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 14
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • 1, 2, April
    • A. Jain, J. Tompson, M. Andriluka, G. W. Taylor, and C. Bregler. Learning human pose estimation features with convolutional networks. In ICLR, April 2014. 1, 2
    • (2014) ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3    Taylor, G.W.4    Bregler, C.5
  • 15
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • 5, Oct
    • T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural SVMs. Mach. Learn., 77 (1): 27-59, Oct. 2009. 5
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.J.3
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 2, 6
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 2, 6
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84945952592 scopus 로고    scopus 로고
    • 3d human pose estimation from monocular images with deep convolutional neural network
    • 1, 2, 4, 6, 7, 8
    • S. Li and A. B. Chan. 3d human pose estimation from monocular images with deep convolutional neural network. In ACCV, 2014. 1, 2, 4, 6, 7, 8
    • (2014) ACCV
    • Li, S.1    Chan, A.B.2
  • 19
    • 84939885143 scopus 로고    scopus 로고
    • Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network
    • 1, 2, 4
    • S. Li, Z.-Q. Liu, and A. B. Chan. Heterogeneous multi-task learning for human pose estimation with deep convolutional neural network. IJCV, pages 1-18, 2014. 1, 2, 4
    • (2014) IJCV , pp. 1-18
    • Li, S.1    Liu, Z.-Q.2    Chan, A.B.3
  • 20
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • 3
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010. 3
    • (2010) ICML
    • Nair, V.1    Hinton, G.E.2
  • 22
    • 34249661090 scopus 로고    scopus 로고
    • Synergistic face detection and pose estimation with energy-based models
    • 2, May
    • M. Osadchy, Y. L. Cun, and M. L. Miller. Synergistic face detection and pose estimation with energy-based models. J. Mach. Learn. Res., 8: 1197-1215, May 2007. 2
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1197-1215
    • Osadchy, M.1    Cun, Y.L.2    Miller, M.L.3
  • 23
    • 84908537903 scopus 로고    scopus 로고
    • CNN features off-the-shelf: An astounding baseline for recognition
    • 2
    • A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN features off-the-shelf: An astounding baseline for recognition. In CVPR, pages 512-519, 2014. 2
    • (2014) CVPR , pp. 512-519
    • Razavian, A.S.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 24
    • 84898493831 scopus 로고    scopus 로고
    • Label embedding for text recognition
    • 1, 2
    • J. A. Rodríguez and F. Perronnin. Label embedding for text recognition. In BMVC, 2013. 1, 2
    • (2013) BMVC
    • Rodríguez, J.A.1    Perronnin, F.2
  • 26
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • 1
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In In Proc. CVPR, 2013. 1
    • (2013) Proc. CVPR
    • Sapp, B.1    Taskar, B.2
  • 28
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • 3. Curran Associates, Inc
    • N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, pages 2222-2230. Curran Associates, Inc., 2012. 3
    • (2012) NIPS , pp. 2222-2230
    • Srivastava, N.1    Salakhutdinov, R.R.2
  • 29
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10, 000 classes
    • 4
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10, 000 classes. In CVPR. IEEE Computer Society, 2014. 4
    • (2014) CVPR. IEEE Computer Society
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 30
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • 1, 2
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014. 1, 2
    • (2014) NIPS
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 31
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • 1, 2
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014. 1, 2
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 32
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • 1
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004. 1
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 33
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • 4, Dec
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6: 1453-1484, Dec. 2005. 4
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 34
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • 1
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011. 1
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.