메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3073-3082

End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; COMPLEX NETWORKS; COMPUTER VISION; CONVOLUTION; DEFORMATION; GESTURE RECOGNITION; MIXTURES; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84986295323     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.335     Document Type: Conference Paper
Times cited : (297)

References (52)
  • 1
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 2
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 3
    • 84959190635 scopus 로고    scopus 로고
    • Parsing occluded people by flexible compositions
    • X. Chen and A. Yuille. Parsing occluded people by flexible compositions. In CVPR, 2015.
    • (2015) CVPR
    • Chen, X.1    Yuille, A.2
  • 4
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.L.2
  • 5
    • 84911446929 scopus 로고    scopus 로고
    • Mixing body-part sequences for human pose estimation
    • A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing body-part sequences for human pose estimation. In CVPR, 2014.
    • (2014) CVPR
    • Cherian, A.1    Mairal, J.2    Alahari, K.3    Schmid, C.4
  • 6
    • 84870249775 scopus 로고    scopus 로고
    • Adaptive occlusion state estimation for human pose tracking under selfocclusions
    • N.-G. Cho, A. L. Yuille, and S.-W. Lee. Adaptive occlusion state estimation for human pose tracking under selfocclusions. Pattern Recognition, 46(3):649-661, 2013.
    • (2013) Pattern Recognition , vol.46 , Issue.3 , pp. 649-661
    • Cho, N.-G.1    Yuille, A.L.2    Lee, S.-W.3
  • 7
    • 85009841575 scopus 로고    scopus 로고
    • Structured feature learning for pose estimation
    • X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature learning for pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Chu, X.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 8
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 9
    • 84907812435 scopus 로고    scopus 로고
    • Appearance sharing for collective human pose estimation
    • M. Eichner and V. Ferrari. Appearance sharing for collective human pose estimation. In ACCV, 2013.
    • (2013) ACCV
    • Eichner, M.1    Ferrari, V.2
  • 10
    • 84959205097 scopus 로고    scopus 로고
    • Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation
    • X. Fan, K. Zheng, Y. Lin, and S. Wang. Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation. In CVPR, 2015.
    • (2015) CVPR
    • Fan, X.1    Zheng, K.2    Lin, Y.3    Wang, S.4
  • 11
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005.
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 13
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial structures. IEEE Transactions on Computers, 22(1):67-92, 1973.
    • (1973) IEEE Transactions on Computers , vol.22 , Issue.1 , pp. 67-92
    • Fischler, M.A.1    Elschlager, R.A.2
  • 14
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 15
    • 85083953149 scopus 로고    scopus 로고
    • Learning human pose estimation features with convolutional networks
    • A. Jain, J. Tompson, M. Andriluka, G.W. Taylor, and C. Bregler. Learning human pose estimation features with convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Jain, A.1    Tompson, J.2    Andriluka, M.3    Taylor, G.W.4    Bregler, C.5
  • 16
    • 84977621671 scopus 로고    scopus 로고
    • Modeep: A deep learning framework using motion features for human pose estimation
    • A. Jain, J. Tompson, Y. LeCun, and C. Bregler. Modeep: A deep learning framework using motion features for human pose estimation. In ACCV, 2014.
    • (2014) ACCV
    • Jain, A.1    Tompson, J.2    LeCun, Y.3    Bregler, C.4
  • 17
    • 51949102800 scopus 로고    scopus 로고
    • Global pose estimation using non-tree models
    • H. Jiang and D. R. Martin. Global pose estimation using non-tree models. In CVPR, 2008.
    • (2008) CVPR
    • Jiang, H.1    Martin, D.R.2
  • 18
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 19
    • 80052884516 scopus 로고    scopus 로고
    • Learning effective human pose estimation from inaccurate annotation
    • S. Johnson and M. Everingham. Learning effective human pose estimation from inaccurate annotation. In CVPR, 2011.
    • (2011) CVPR
    • Johnson, S.1    Everingham, M.2
  • 20
    • 84986331475 scopus 로고    scopus 로고
    • Object detection from video tubelets with convolutional neural networks
    • K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Kang, K.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 21
    • 84942581361 scopus 로고    scopus 로고
    • Human pose estimation with fields of parts
    • M. Kiefel and P. V. Gehler. Human pose estimation with fields of parts. In ECCV, 2014.
    • (2014) ECCV
    • Kiefel, M.1    Gehler, P.V.2
  • 22
    • 84965128185 scopus 로고    scopus 로고
    • Deeply learning the messages in message passing inference
    • G. Lin, C. Shen, I. Reid, and A. v. d. Hengel. Deeply learning the messages in message passing inference. In NIPS, 2015.
    • (2015) NIPS
    • Lin, G.1    Shen, C.2    Reid, I.3    Hengel A, V.D.4
  • 23
    • 85009918510 scopus 로고    scopus 로고
    • Deep structured scene parsing by learning with image descriptions
    • L. Lin, G.Wang, R. Zhang, R. Zhang, X. Liang, andW. Zuo. Deep structured scene parsing by learning with image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Lin, L.1    Wang, G.2    Zhang, R.3    Zhang, R.4    Liang, X.5    Zuo, W.6
  • 24
    • 84959229072 scopus 로고    scopus 로고
    • Deep convolutional neural fields for depth estimation from a single image
    • F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation from a single image. In CVPR, 2015.
    • (2015) CVPR
    • Liu, F.1    Shen, C.2    Lin, G.3
  • 25
    • 0042376057 scopus 로고    scopus 로고
    • Estimating human body configurations using shape context matching
    • G. Mori and J. Malik. Estimating human body configurations using shape context matching. In ECCV, 2002.
    • (2002) ECCV
    • Mori, G.1    Malik, J.2
  • 26
    • 84911409274 scopus 로고    scopus 로고
    • Multi-source deep learning for human pose estimation
    • W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose estimation. In CVPR, 2014.
    • (2014) CVPR
    • Ouyang, W.1    Chu, X.2    Wang, X.3
  • 27
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In ICCV, 2013.
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 28
    • 85009886379 scopus 로고    scopus 로고
    • Factors in finetuning deep model for object detection
    • W. Ouyang, X. Wang, C. Zhang, and X. Yang. Factors in finetuning deep model for object detection. In CVPR, 2016.
    • (2016) CVPR
    • Ouyang, W.1    Wang, X.2    Zhang, C.3    Yang, X.4
  • 30
    • 84898795911 scopus 로고    scopus 로고
    • Strong appearance and expressive spatial models for human pose estimation
    • L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong appearance and expressive spatial models for human pose estimation. In ICCV, 2013.
    • (2013) ICCV
    • Pishchulin, L.1    Andriluka, M.2    Gehler, P.3    Schiele, B.4
  • 33
    • 85134634152 scopus 로고    scopus 로고
    • Learning to parse images of articulated objects
    • D. Ramanan. Learning to parse images of articulated objects. In NIPS, 2006.
    • (2006) NIPS
    • Ramanan, D.1
  • 34
    • 33745958242 scopus 로고    scopus 로고
    • Recovering human body configurations using pairwise constraints between parts
    • X. Ren, A. C. Berg, and J. Malik. Recovering human body configurations using pairwise constraints between parts. In ICCV, 2005.
    • (2005) ICCV
    • Ren, X.1    Berg, A.C.2    Malik, J.3
  • 35
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 36
    • 33845575116 scopus 로고    scopus 로고
    • Measure locally, reason globally: Occlusion-sensitive articulated pose estimation
    • L. Sigal and M. J. Black. Measure locally, reason globally: Occlusion-sensitive articulated pose estimation. In CVPR, 2006.
    • (2006) CVPR
    • Sigal, L.1    Black, M.J.2
  • 38
    • 77955994777 scopus 로고    scopus 로고
    • Fast globally optimal 2d human detection with loopy graph models
    • T.-P. Tian and S. Sclaroff. Fast globally optimal 2d human detection with loopy graph models. In CVPR, 2010.
    • (2010) CVPR
    • Tian, T.-P.1    Sclaroff, S.2
  • 39
    • 84887323389 scopus 로고    scopus 로고
    • Exploring the spatial hierarchy of mixture models for human pose estimation
    • Y. Tian, C. L. Zitnick, and S. G. Narasimhan. Exploring the spatial hierarchy of mixture models for human pose estimation. In ECCV, 2012.
    • (2012) ECCV
    • Tian, Y.1    Zitnick, C.L.2    Narasimhan, S.G.3
  • 41
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 42
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 43
    • 80052906380 scopus 로고    scopus 로고
    • Improved human parsing with a full relational model
    • D. Tran and D. Forsyth. Improved human parsing with a full relational model. In ECCV, 2010.
    • (2010) ECCV
    • Tran, D.1    Forsyth, D.2
  • 44
    • 84959203164 scopus 로고    scopus 로고
    • End-to-end integration of a convolutional network, deformable parts model and nonmaximum suppression
    • L. Wan, D. Eigen, and R. Fergus. End-to-end integration of a convolutional network, deformable parts model and nonmaximum suppression. In CVPR, 2015.
    • (2015) CVPR
    • Wan, L.1    Eigen, D.2    Fergus, R.3
  • 45
    • 84887346790 scopus 로고    scopus 로고
    • An approach to posebased action recognition
    • C. Wang, Y. Wang, and A. L. Yuille. An approach to posebased action recognition. In CVPR, 2013.
    • (2013) CVPR
    • Wang, C.1    Wang, Y.2    Yuille, A.L.3
  • 46
    • 84887367149 scopus 로고    scopus 로고
    • Beyond physical connections: Tree models in human pose estimation
    • F.Wang and Y. Li. Beyond physical connections: Tree models in human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Wang, F.1    Li, Y.2
  • 47
    • 84959227715 scopus 로고    scopus 로고
    • Deep networks for saliency detection via local estimation and global search
    • L. Wang, H. Lu, X. Ruan, and M.-H. Yang. Deep networks for saliency detection via local estimation and global search. In CVPR, 2015.
    • (2015) CVPR
    • Wang, L.1    Lu, H.2    Ruan, X.3    Yang, M.-H.4
  • 48
    • 84986264911 scopus 로고    scopus 로고
    • Learning deep feature representations with domain guided dropout for person re-identification
    • T. Xiao, H. Li,W. Ouyang, and X.Wang. Learning deep feature representations with domain guided dropout for person re-identification. In CVPR, 2016.
    • (2016) CVPR
    • Xiao, T.1    Li, H.2    Ouyang, W.3    Wang, X.4
  • 50
    • 84911408100 scopus 로고    scopus 로고
    • Clothing co-parsing by joint image segmentation and labeling
    • W. Yang, P. Luo, and L. Lin. Clothing co-parsing by joint image segmentation and labeling. In CVPR, 2014.
    • (2014) CVPR
    • Yang, W.1    Luo, P.2    Lin, L.3
  • 51
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011.
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 52
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. TPAMI, 35(12):2878-2890, 2013.
    • (2013) TPAMI , vol.35 , Issue.12 , pp. 2878-2890
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.