메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1713-1721

A credit assignment compiler for joint prediction

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; LEARNING SYSTEMS; PARALLEL PROCESSING SYSTEMS;

EID: 85018863227     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (11)

References (49)
  • 3
  • 6
  • 8
    • 84951272941 scopus 로고    scopus 로고
    • A fast and accurate dependency parser using neural networks
    • D. Chen and C. Manning. A fast and accurate dependency parser using neural networks. In EMNLP, pages 740-750, 2014.
    • (2014) EMNLP , pp. 740-750
    • Chen, D.1    Manning, C.2
  • 9
    • 85127836544 scopus 로고    scopus 로고
    • Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms
    • M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In EMNLP, 2002.
    • (2002) EMNLP
    • Collins, M.1
  • 10
    • 85116919751 scopus 로고    scopus 로고
    • Incremental parsing with the perceptron algorithm
    • M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In ACL, 2004.
    • (2004) ACL
    • Collins, M.1    Roark, B.2
  • 12
    • 31844433245 scopus 로고    scopus 로고
    • Learning as search optimization: Approximate large margin methods for structured prediction
    • H. Daumé III and D. Marcu. Learning as search optimization: Approximate large margin methods for structured prediction. In ICML, 2005.
    • (2005) ICML
    • Daumé, H.1    Marcu, D.2
  • 13
    • 84867115317 scopus 로고    scopus 로고
    • Output space search for structured prediction
    • J. R. Doppa, A. Fern, and P. Tadepalli. Output space search for structured prediction. In ICML, 2012.
    • (2012) ICML
    • Doppa, J.R.1    Fern, A.2    Tadepalli, P.3
  • 14
    • 84902808499 scopus 로고    scopus 로고
    • HC-search: A learning framework for search-based structured prediction
    • J. R. Doppa, A. Fern, and P. Tadepalli. HC-Search: A learning framework for search-based structured prediction. JAIR, 50, 2014.
    • (2014) JAIR , vol.50
    • Doppa, J.R.1    Fern, A.2    Tadepalli, P.3
  • 15
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159, 2011.
    • (2011) JMLR , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 16
    • 84943742882 scopus 로고    scopus 로고
    • Transition-based dependency parsing with stack long short-term memory
    • C. Dyer, M. Ballesteros, W. Ling, A. Matthews, and N. A. Smith. Transition-based dependency parsing with stack long short-term memory. In ACL, 2015.
    • (2015) ACL
    • Dyer, C.1    Ballesteros, M.2    Ling, W.3    Matthews, A.4    Smith, N.A.5
  • 17
    • 80053265598 scopus 로고    scopus 로고
    • Compiling comp ling: Practical weighted dynamic programming and the dyna language
    • J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp ling: Practical weighted dynamic programming and the dyna language. In EMNLP, 2005.
    • (2005) EMNLP
    • Eisner, J.1    Goldlust, E.2    Smith, N.A.3
  • 18
  • 19
    • 84903437505 scopus 로고    scopus 로고
    • Training deterministic parsers with non-deterministic oracles
    • Y. Goldberg and J. Nivre. Training deterministic parsers with non-deterministic oracles. Transactions of the ACL, 1, 2013.
    • (2013) Transactions of the ACL , vol.1
    • Goldberg, Y.1    Nivre, J.2
  • 22
    • 84926138135 scopus 로고    scopus 로고
    • Structured perceptron with inexact search
    • L. Huang, S. Fayong, and Y. Guo. Structured perceptron with inexact search. In NAACL, 2012.
    • (2012) NAACL
    • Huang, L.1    Fayong, S.2    Guo, Y.3
  • 24
    • 80053162014 scopus 로고    scopus 로고
    • Online importance weight aware updates
    • N. Karampatziakis and J. Langford. Online importance weight aware updates. In UAI, 2011.
    • (2011) UAI
    • Karampatziakis, N.1    Langford, J.2
  • 26
    • 84949843873 scopus 로고    scopus 로고
    • Saul: Towards declarative learning based programming
    • P. Kordjamshidi, D. Roth, and H. Wu. Saul: Towards declarative learning based programming. In IJCAI, 2015.
    • (2015) IJCAI
    • Kordjamshidi, P.1    Roth, D.2    Wu, H.3
  • 28
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 30
    • 0000747663 scopus 로고    scopus 로고
    • Maximum entropy Markov models for information extraction and segmentation
    • A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for information extraction and segmentation. In ICML, 2000.
    • (2000) ICML
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 31
    • 84863338363 scopus 로고    scopus 로고
    • FACTORIE: Probabilistic programming via imperatively defined factor graphs
    • A. McCallum, K. Schultz, and S. Singh. FACTORIE: probabilistic programming via imperatively defined factor graphs. In NIPS, 2009.
    • (2009) NIPS
    • McCallum, A.1    Schultz, K.2    Singh, S.3
  • 34
    • 0141819580 scopus 로고    scopus 로고
    • PEGASUS: A policy search method for large MDPs and POMDPs
    • A. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs and POMDPs. In UAI, pages 406-415, 2000.
    • (2000) UAI , pp. 406-415
    • Ng, A.1    Jordan, M.2
  • 35
    • 33746230843 scopus 로고    scopus 로고
    • An efficient algorithm for projective dependency parsing
    • J. Nivre. An efficient algorithm for projective dependency parsing. In IWPT, pages 149-160, 2003.
    • (2003) IWPT , pp. 149-160
    • Nivre, J.1
  • 36
    • 84880881676 scopus 로고    scopus 로고
    • Ibal: A probabilistic rational programming language
    • A. Pfeffer. Ibal: A probabilistic rational programming language. In IJCAI, 2001.
    • (2001) IJCAI
    • Pfeffer, A.1
  • 37
    • 84862300668 scopus 로고    scopus 로고
    • Design challenges and misconceptions in named entity recognition
    • L. Ratinov and D. Roth. Design challenges and misconceptions in named entity recognition. In CoNLL, 2009.
    • (2009) CoNLL
    • Ratinov, L.1    Roth, D.2
  • 41
    • 84867135104 scopus 로고    scopus 로고
    • A reduction of imitation learning and structured prediction to no-regret online learning
    • S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured prediction to no-regret online learning. In AI-Stats, 2011.
    • (2011) AI-Stats
    • Ross, S.1    Gordon, G.J.2    Bagnell, J.A.3
  • 43
    • 37849051438 scopus 로고    scopus 로고
    • Global inference for entity and relation identification via a linear programming formulation
    • MIT Press
    • D. Roth and S. W. Yih. Global inference for entity and relation identification via a linear programming formulation. In Introduction to Statistical Relational Learning. MIT Press, 2007.
    • (2007) Introduction to Statistical Relational Learning
    • Roth, D.1    Yih, S.W.2
  • 44
    • 0039891959 scopus 로고    scopus 로고
    • A machine learning approach to coreference resolution of noun phrases
    • W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning approach to coreference resolution of noun phrases. Computational Linguistics, 27(4):521-544, 2001.
    • (2001) Computational Linguistics , vol.27 , Issue.4 , pp. 521-544
    • Soon, W.M.1    Ng, H.T.2    Lim, D.C.Y.3
  • 45
    • 85162007418 scopus 로고    scopus 로고
    • A reduction from apprenticeship learning to classification
    • U. Syed and R. E. Schapire. A reduction from apprenticeship learning to classification. In NIPS, 2011.
    • (2011) NIPS
    • Syed, U.1    Schapire, R.E.2
  • 47
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML, 2004.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 48
    • 34547997350 scopus 로고    scopus 로고
    • On learning linear ranking functions for beam search
    • Y. Xu and A. Fern. On learning linear ranking functions for beam search. In ICML, pages 1047-1054, 2007.
    • (2007) ICML , pp. 1047-1054
    • Xu, Y.1    Fern, A.2
  • 49
    • 84880862552 scopus 로고    scopus 로고
    • Discriminative learning of beam-search heuristics for planning
    • Y. Xu, A. Fern, and S. W. Yoon. Discriminative learning of beam-search heuristics for planning. In IJCAI, pages 2041-2046, 2007.
    • (2007) IJCAI , pp. 2041-2046
    • Xu, Y.1    Fern, A.2    Yoon, S.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.