메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 334-343

Transition-based dependency parsing with stack long short-term memory

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 84943742882     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p15-1033     Document Type: Conference Paper
Times cited : (632)

References (51)
  • 1
    • 84959866454 scopus 로고    scopus 로고
    • Automatic feature selection for agenda-based dependency parsing
    • Miguel Ballesteros and Bernd Bohnet. 2014. Automatic feature selection for agenda-based dependency parsing. In Proc. COLING.
    • (2014) Proc. COLING
    • Ballesteros, M.1    Bohnet, B.2
  • 3
    • 84906933205 scopus 로고    scopus 로고
    • Tailoring continuous word representations for dependency parsing
    • Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014. Tailoring continuous word representations for dependency parsing. In Proc. ACL.
    • (2014) Proc. ACL
    • Bansal, M.1    Gimpel, K.2    Livescu, K.3
  • 4
    • 84876789704 scopus 로고    scopus 로고
    • A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing
    • Bernd Bohnet and Joakim Nivre. 2012. A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Proc. EMNLP.
    • (2012) Proc. EMNLP
    • Bohnet, B.1    Nivre, J.2
  • 5
    • 84951272941 scopus 로고    scopus 로고
    • A fast and accurate dependency parser using neural networks
    • Danqi Chen and Christopher D. Manning. 2014. A fast and accurate dependency parser using neural networks. In Proc. EMNLP.
    • (2014) Proc. EMNLP
    • Chen, D.1    Manning, C.D.2
  • 6
    • 84959928208 scopus 로고    scopus 로고
    • Feature embedding for dependency parsing
    • Wenliang Chen, Yue Zhang, and Min Zhang. 2014. Feature embedding for dependency parsing. In Proc. COLING.
    • (2014) Proc. COLING
    • Chen, W.1    Zhang, Y.2    Zhang, M.3
  • 7
    • 84906929207 scopus 로고    scopus 로고
    • Transition-based dependency parsing with selectional branching
    • Jinho D. Choi and Andrew McCallum. 2013. Transition-based dependency parsing with selectional branching. In Proc. ACL.
    • (2013) Proc. ACL
    • Choi, J.D.1    McCallum, A.2
  • 8
    • 0009401446 scopus 로고
    • Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external stack memory
    • Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun. 1992. Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external stack memory. In Proc. Cognitive Science Society.
    • (1992) Proc. Cognitive Science Society
    • Das, S.1    Lee Giles, C.2    Sun, G.3
  • 9
    • 85037338954 scopus 로고    scopus 로고
    • Generating typed dependency parses from phrase structure parses
    • Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. 2006. Generating typed dependency parses from phrase structure parses. In Proc. LREC.
    • (2006) Proc. LREC
    • De Marneffe, M.1    Maccartney, B.2    Manning, C.D.3
  • 10
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. ICML.
    • (2011) Proc. ICML
    • Glorot, X.1    Bengio, Y.2
  • 11
  • 12
    • 84907358892 scopus 로고    scopus 로고
    • Efficient implementation of beam-search incremental parsers
    • Yoav Goldberg, Kai Zhao, and Liang Huang. 2013. Efficient implementation of beam-search incremental parsers. In Proc. ACL.
    • (2013) Proc. ACL
    • Goldberg, Y.1    Zhao, K.2    Huang, L.3
  • 13
    • 33750097476 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM networks
    • Alex Graves and Jurgen Schmidhuber. 2005. Framewise phoneme classification with bidirectional LSTM networks. In Proc. IJCNN.
    • (2005) Proc. IJCNN
    • Graves, A.1    Schmidhuber, J.2
  • 18
    • 34748925362 scopus 로고    scopus 로고
    • Discriminative training of a neural network discriminative parser
    • James Henderson. 2004. Discriminative training of a neural network discriminative parser. In Proc. ACL.
    • (2004) Proc. ACL
    • Henderson, J.1
  • 19
    • 84906929292 scopus 로고    scopus 로고
    • The role of syntax in vector space models of compositional semantics
    • Karl Moritz Hermann and Phil Blunsom. 2013. The role of syntax in vector space models of compositional semantics. In Proc. ACL.
    • (2013) Proc. ACL
    • Hermann, K.M.1    Blunsom, P.2
  • 21
    • 84859887879 scopus 로고    scopus 로고
    • Forest reranking: Discriminative parsing with non-local features
    • Liang Huang and David Chiang. 2008. Forest reranking: Discriminative parsing with non-local features. In Proc. ACL.
    • (2008) Proc. ACL
    • Huang, L.1    Chiang, D.2
  • 22
    • 84922170814 scopus 로고    scopus 로고
    • Insideoutside recursive neural network model for dependency parsing
    • Phong Le and Willem Zuidema. 2014. Insideoutside recursive neural network model for dependency parsing. In Proc. EMNLP.
    • (2014) Proc. EMNLP
    • Le, P.1    Zuidema, W.2
  • 23
    • 84960154029 scopus 로고    scopus 로고
    • Two/too simple adaptations of word2vec for syntax problems
    • Wang Ling, Chris Dyer, Alan Black, and Isabel Trancoso. 2015. Two/too simple adaptations of word2vec for syntax problems. In Proc. NAACL.
    • (2015) Proc. NAACL
    • Ling, W.1    Dyer, C.2    Black, A.3    Trancoso, I.4
  • 25
    • 33745850875 scopus 로고    scopus 로고
    • SARDSRN: A neural network shift-reduce parser
    • Marshall R. Mayberry and Risto Miikkulainen. 1999. SARDSRN: A neural network shift-reduce parser. In Proc. IJCAI.
    • (1999) Proc. IJCAI
    • Mayberry, M.R.1    Miikkulainen, R.2
  • 26
    • 0029690502 scopus 로고    scopus 로고
    • Subsymbolic case-role analysis of sentences with embedded clauses
    • Risto Mikkulainen. 1996. Subsymbolic case-role analysis of sentences with embedded clauses. Cognitive Science, 20:47-73.
    • (1996) Cognitive Science , vol.20 , pp. 47-73
    • Mikkulainen, R.1
  • 27
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Proc. NIPS.
    • (2013) Proc. NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 28
    • 33746230843 scopus 로고    scopus 로고
    • An efficient algorithm for projective dependency parsing
    • Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proc. IWPT.
    • (2003) Proc. IWPT
    • Nivre, J.1
  • 30
    • 78650482047 scopus 로고    scopus 로고
    • Incremental non-projective dependency parsing
    • Joakim Nivre. 2007. Incremental non-projective dependency parsing. In Proc. NAACL.
    • (2007) Proc. NAACL
    • Nivre, J.1
  • 31
    • 57349126314 scopus 로고    scopus 로고
    • Algorithms for deterministic incremental dependency parsing
    • MIT Press
    • Joakim Nivre. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics, 34:4:513-553. MIT Press.
    • (2008) Computational Linguistics , vol.34 , Issue.4 , pp. 513-553
    • Nivre, J.1
  • 32
    • 84859887672 scopus 로고    scopus 로고
    • Non-projective dependency parsing in expected linear time
    • Joakim Nivre. 2009. Non-projective dependency parsing in expected linear time. In Proc. ACL.
    • (2009) Proc. ACL
    • Nivre, J.1
  • 33
    • 85083951919 scopus 로고    scopus 로고
    • How to construct deep recurrent neural networks
    • Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. How to construct deep recurrent neural networks. In Proc. ICLR.
    • (2014) Proc. ICLR
    • Pascanu, R.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 34
    • 84907342294 scopus 로고    scopus 로고
    • A transition-based dependency parser using a dynamic parsing strategy
    • Francesco Sartorio, Giorgio Satta, and Joakim Nivre. 2013. A transition-based dependency parser using a dynamic parsing strategy. In Proc. ACL.
    • (2013) Proc. ACL
    • Sartorio, F.1    Satta, G.2    Nivre, J.3
  • 35
    • 85162476102 scopus 로고    scopus 로고
    • Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
    • Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christopher D. Manning. 2011. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proc. NIPS.
    • (2011) Proc. NIPS
    • Socher, R.1    Huang, E.H.2    Pennington, J.3    Ng, A.Y.4    Manning, C.D.5
  • 36
    • 84893795422 scopus 로고    scopus 로고
    • Parsing with compositional vector grammars
    • Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. 2013a. Parsing with compositional vector grammars. In Proc. ACL.
    • (2013) Proc. ACL
    • Socher, R.1    Bauer, J.2    Manning, C.D.3    Ng, A.Y.4
  • 37
    • 84906925854 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D. Manning, and Andrew Y. Ng. 2013b. Grounded compositional semantics for finding and describing images with sentences. TACL.
    • (2013) TACL
    • Socher, R.1    Karpathy, A.2    Le Christopher, Q.V.3    Manning, D.4    Ng, A.Y.5
  • 38
  • 39
    • 84943762069 scopus 로고    scopus 로고
    • Transition-based dependency parsing using recursive neural networks
    • Pontus Stenetorp. 2013. Transition-based dependency parsing using recursive neural networks. In Proc. NIPS Deep Learning Workshop.
    • (2013) Proc. NIPS Deep Learning Workshop
    • Stenetorp, P.1
  • 40
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In Proc. NIPS.
    • (2014) Proc. NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 41
    • 84860516367 scopus 로고    scopus 로고
    • Constituent parsing with incremental sigmoid belief networks
    • Ivan Titov and James Henderson. 2007. Constituent parsing with incremental sigmoid belief networks. In Proc. ACL.
    • (2007) Proc. ACL
    • Titov, I.1    Henderson, J.2
  • 42
    • 84983470508 scopus 로고    scopus 로고
    • Feature-rich part-ofspeech tagging with a cyclic dependency network
    • Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003. Feature-rich part-ofspeech tagging with a cyclic dependency network. In Proc. NAACL.
    • (2003) Proc. NAACL
    • Toutanova, K.1    Klein, D.2    Manning, C.D.3    Singer, Y.4
  • 45
    • 84943784251 scopus 로고    scopus 로고
    • Structured training for neural network transition-based parsing
    • DavidWeiss, Christopher Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural network transition-based parsing. In Proc. ACL.
    • (2015) Proc. ACL
    • Christopher, A.D.1    Collins, M.2    Petrov, S.3
  • 47
    • 26044449174 scopus 로고    scopus 로고
    • Statistical dependency analysis with support vector machines
    • Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with support vector machines. In Proc. IWPT.
    • (2003) Proc. IWPT
    • Yamada, H.1    Matsumoto, Y.2
  • 49
    • 77956001364 scopus 로고    scopus 로고
    • A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing
    • Yue Zhang and Stephen Clark. 2008. A tale of two parsers: Investigating and combining graph-based and transition-based dependency parsing. In Proc. EMNLP.
    • (2008) Proc. EMNLP
    • Zhang, Y.1    Clark, S.2
  • 50
    • 84859018340 scopus 로고    scopus 로고
    • Transition-based dependency parsing with rich non-local features
    • Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In Proc. ACL.
    • (2011) Proc. ACL
    • Zhang, Y.1    Nivre, J.2
  • 51
    • 84926011368 scopus 로고    scopus 로고
    • Greed is good if randomized: New inference for dependency parsing
    • Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2014. Greed is good if randomized: New inference for dependency parsing. In Proc. EMNLP
    • (2014) Proc. EMNLP
    • Zhang, Y.1    Lei, T.2    Barzilay, R.3    Jaakkola, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.